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ABSTRACT

UNBOUND STATES IN THE LIGHTEST ISLAND OF INVERSION: NEUTRON
DECAY MEASUREMENTS OF 11LI, 10LI, AND 12BE

By

Jenna Kathleen Smith

The light nuclei in the N ∼ 8 region provide easily accessible systems for studying the structure
of exotic nuclei. The nuclide 11Li is a two-neutron halo system, a Borromean nucleus, and located
in the N ∼ 8 island of inversion. The next lightest lithium isotope, 10Li is neutron unbound,
located on the western edge of the island of inversion, and important for the understanding of the
11Li system. 12Be is the heaviest N = 8 isotone in the island of inversion. Neutron unbound states
from all three systems have been measured and analyzed in this work.

The experiment was conducted at the National Superconducting Cyclotron Laboratory. Beams
of exotic boron isotopes (12B and 13B) were provided by the Coupled Cyclotron Facility and deliv-
ered to the MoNA-LISA-Sweeper setup, each at 71 MeV/u. The neutron-unbound isotopes were
created in a secondary beryllium target where they immediately decayed into a charged daughter
fragment and one or two neutrons. The charged daughter fragment was measured by a suite of
charged particle detectors and the neutrons were detected by MoNA-LISA.

Measurement of the 11Li unbound system showed a state at 1210±80 keV excitation energy
with a width greater than 1200 keV, consistent with previous measurements. Correlations between
the three decay products were examined with use of Jacobi spectra and Dalitz plots, which revealed
a correlation between the two neutrons stronger than that expected from the decay of two neutrons
uncorrelated in the nucleus. This is the first correlation measurement attributable to a specific
unbound state in 11Li. Unbound states in 10Li were populated with a two-proton knockout from
a 12B beam, a reaction expected to populate primarily positive-parity states. The decay energy
spectra of 10Li was fit with three peaks at 110±40 keV, 500±100 keV, and 1100±100 keV. The
lowest two of these peaks are expected to be a 1+/2+ doublet. Calculation of the 0p1/2 single
particle energy in the 10Li system and comparison with Faddeev calculations suggests that both
states of the 2−/1− doublet are below 50 keV, consistent with previous measurements of one ` = 0
state at 50 keV or below. In the 12Be system, a measured decay energy of 1243±20 keV corresponds
to an excitation energy between 4400 and 4800 keV, depending on the combination of final states
populated in 11Be. A lack of decays to 10Be placed an upper limit of 5% on the branching ratio
to the ground state of 10Be via 2n emission. This low branching ratio, as well as spin and parity
selectivity from the 1p-knockout production mechanism, suggests that the spin and parity of this
state is 1− or 2−.
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Chapter 1

Introduction

1.1 Chart of nuclides

The atomic nucleus is a many-body system of protons and neutrons. A nuclide is a species of
atomic nucleus defined by the number of protons (Z) and neutrons (N) it has. Nuclear scientists
use a chart of nuclides to organize information (Figure 1.1). Like the periodic table, this chart
organizes the systems under study and presents an easy way to view patterns.

The chart of nuclides is organized by neutron number (along the x-axis) and proton number
(along the y-axis). Straight down a diagonal of the chart, denoted in Figure 1.1 by the black
squares, is the valley of stability. These are the common, stable nuclei, many of which are naturally
occuring. Nuclides on either side of the valley of stability tend to decay toward that valley. The
way a nuclide decays is called its decay mode and the time constant that defines how long it will
live is called its half-life. Figure 1.1 shows the most common mode of decay for each nuclide from
its ground state. On the proton-rich side of the valley of stability, most nuclides decay by emitting
a positron and turning a proton into a neutron (β+ decay, shown by the pink squares). On the
neutron-rich side, the primary mode of decay is β− decay (blue squares): turning a neutron into a
proton by emitting an electron.

Far out from the valley of stability are the proton and neutron driplines. These are the limits
beyond which the nuclides are unbound with respect to neutron or proton emission and decay by
emission of a proton (purple squares in Figure 1.1) or a neutron (orange squares). These limits are
called driplines because beyond these lines, the protons and neutrons just “drip” off the nucleus.
Beyond the neutron dripline, the nuclides have a half-life on the order of 10−21 s. Two other
primary modes of decay employed by nuclei are alpha decay (the emission of a 4He nucleus) and
fission (the splitting of the nucleus into two or more fragments).

1.2 Shell model

The nuclear landscape is not a smooth, continuously changing landscape with the valley of stability
as the lowest point. Already visible in Figure 1.1 are signs of more intricate structure: nuclides
with even Z or even N seem to be more stable than their odd Z or N neighbors and there are
some “ridges” where the nuclei are more stable than their neighbors (Z = 50 for example). In
1933, Elsasser noted that nuclides with particular numbers of protons or neutrons appeared to be
more stable [2]. Fifteen years later, Maria Goeppert Mayer summarized the increased experimental
evidence for the stability of certain nuclei with neutron numbers of 50, 82, or 126 and proton
numbers of 20, 50, or 82 [3]. One year later, Mayer and the collaboration of Haxel, Jensen,
and Suess independently published shell models with strong spin-orbit splitting that resulted in
increased stability via large shell gaps at these numbers [4, 5].

The nuclear shell model shares some properties with the electronic shell model. Both begin
by placing particles in a single-particle potential. This potential has eigenstates which can be
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Figure 1.1: Chart of the nuclides, showing the principal decay mode of the nuclide. Data from [1].

characterized by their quantum numbers (n and `) and energies. A spin-orbit term is then added
to the original potential. This spin-orbit term lifts the degeneracies of some eigenstates and defines
single-particle orbitals, which are identified by their total angular momentum (j) value. These
eigenstates are filled consecutively by energy, beginning with the lowest energy, and following the
Pauli principle: no identical particles may be placed in eigenstates with the same quantum numbers.
Each model has gaps of varying size between the orbitals. Gaps that are large correspond to “magic
numbers”. Systems filled to these numbers are observed to be more stable than others (i.e. noble
gases, “magic” nuclei).

There are some differences between electronic and nuclear shell models. In the nuclear shell
model, the potential felt by each particle is generated by the other particles considered in the
system (other nucleons), rather than by a central body (for electrons, this would be the atomic
nucleus). The length scales are different, 10−15 m for the nuclear shell model and 10−12 m for the
atomic shell model. The spin-orbit term, while a small correction to energy levels in the electronic
shell model, plays a larger role in the nuclear shell model and is observed to have a different sign.
Also, while there is a clear physical reason for including the spin-orbit term in the electronic shell
model, the physical reason for including the nuclear spin-orbit term is less clear.

Two common bases for the initial potential are the harmonic oscillator and a Wood-Saxon
potential. The harmonic oscillator is chosen because its basis states are simple and analytic, while
the shape of the Wood-Saxon potential is closer to the empirically observed shape of the nuclear
densities. The low-lying Wood-Saxon and Wood-Saxon plus spin-orbit orbitals are shown in Figure
1.2, along with the “magic numbers”.
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1.3 Islands of inversion

As the exploration of the nuclear chart has expanded beyond the stable isotopes, some of the
large shell gaps observed in the stable nuclei have disappeared and other gaps have appeared. The
energies associated with each single-particle orbital are not universal. Nuclides that have either
protons or neutrons filled up to a large shell gap display increased stability because excitations
of protons or neutrons to the next orbital takes a significant amount of energy. As single-particle
orbitals on either side of a large gap approach each other, those excitations take less energy and
the “magic number” associated with that shell gaps becomes less “magic”. In some cases, known
as “islands of inversion”, states from either side of magic numbers cross each other. One example
of this is shown in Figure 1.3 that shows the energy difference between the 0p1/2 and 1s1/2 neutron
single-particle energies for the N = 7 isotones. As protons are removed from 14N (Z = 7), the
difference between those levels decreases until at 11Be (Z = 4), when the levels invert.

These “islands of inversion” are located throughout the chart of the nuclides. Figure 1.4 shows
the islands identified by B.A. Brown in 2010 [7] around the major shell closures of N = 8 and 20,
as well as the sub-shell closures of N = 14, 20 and 40. There is experimental evidence for shell
breaking in all of these islands centered around 12Be, 20C, 32Mg, 42Si, and 64Cr [8–14].

In the island of inversion centered around 12Be, used as an example previously, the 1s1/2 level
from the sd shell (the group of 0d3/2, 1s1/2, and 0d5/2 states shown in Figure 1.2) drops down into
the p shell (comprised of the 0p3/2 and 0p1/2 levels), breaking the N = 8 shell closure. The breaking
of the N = 8 closure was first predicted by Talmi and Unna in 1960 [15] based on indications of a
parity inversion in β-decay measurements by Wilkinson and Alburger [16]. The first experimental
confirmation of this inversion was a measurement of the ground state parity of 11Be performed by
Alburger et al. four years later [8]. In normal shell model ordering, the ground state of 11Be should
be 1/2−, with a 0s21/20p

2
3/2 structure in the protons and a 0s21/20p

4
3/20p

1
1/2 structure in the neutrons.

Alburger et al., however, found that the parity of the 11Be ground state was positive. The inversion
is also evident in the ground state structure of 11Li and 12Be in which the two valence neutrons are
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Figure 1.4: Chart of the nuclides and the five predicted islands of inversion (red circles) [7].

Figure 1.5: Drawings of two halo nuclei: 11Be (left) and 11Li (right).

shared between the 0p21/2 and 1s21/2 configurations [17,18].

1.4 Halo nuclei

Far from stability and near the driplines, the binding energy of the last nucleon or two becomes
increasingly small. As the binding of that last nucleon decreases, the nucleon can exist at greater
distances from the core. It can exist at such a distance that instead of modeling a nucleus with
mass A as an A-body system, it can be considered a two-body system, with an A − 1 core and
one additional nucleon. These systems are commonly called one neutron (or proton) halo nuclei.
There are also two- and four- nucleon halo systems. Figure 1.5 shows the known and suspected
halo nuclei.

Halo nuclei are commonly associated with increased neutron or proton radii. Plots showing the
neutron, proton, and matter radii of lithium and beryllium isotopes are presented in Figure 1.6.
The halo nuclei 11Be, 14Be and 11Li are clearly indicated by the sudden increase in neutron and
matter radii but (relatively) constant proton radii. Experimentally, halo nuclei are identified by
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Figure 1.6: Deduced neutron (blue), proton (red), and matter (black) radii of lithium and beryllium
isotopes. Data from [19].

measurements of large reaction cross-section, small neutron (or proton) separation energies, narrow
momentum distributions, and a soft E1 mode of excitation [19]. Figure 1.7 shows the locations of
the identified and potential halo nuclei in the chart of the nuclides.

The first identified halo system was 11Li [20,21]. Tanihata et al. calculated the radii of a chain
of lithium isotopes by measuring the interaction cross-sections and noticed a significant increase
in radius at A = 11 [20]. Kobayashi et al. later confirmed the halo identification by measuring
the transverse momentum distribution of a 9Li fragment after a 2n removal from 11Li [22]. The
measured distribution was fit by a combination of two Gaussians: one Gaussian whose width
was similar to the transverse momentum distributions measured from bound nuclei, and another
narrower one which indicated “the weak binding of the two outer neutrons in the 11Li system” [22].
The first measurement of an electromagnetic dissociation (EMD) enhancement, predicted by Hansen
and Jonson [23] was reported by Kobayashi et al. [24]. When comparing interaction cross-sections
on targets of differing Z, they wrote that “a large enhancement due to the EMD process was found
for high-Z targets” [24].

All presently known two-neutron halo nuclei are also identified as Borromean systems [25, 26].
A Borromean system is a three-body system in which each two-body subsystem is unbound. For
a two-neutron halo nucleus of mass A, those systems include the dineutron and the A− 1 system.
Due to pairing effects (in which a pair of nucleons is more bound than a single nucleon), all the
identified two-neutron halo nuclei have an even number of neutrons.

1.5 Three-body correlations and decays

The properties of a three-body system, such as a Borromean nucleus, depend on the correlations
between the three bodies. These correlations can be extracted using a variety of methods: radii
measurements, correlation measurements based on intensity interferometry, Coulomb excitation,
and reaction measurements [19]. Radii measurements, only able to be performed on bound nu-
clei, use charge and matter radii measurements to calculate the average distance between the two
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E1
k ΓI

Figure 1.8: Level diagram for two-neutron decay labeling E1
k and ΓI .

neutrons as well as their distance from the core. Correlation measurements look at the intensity
correlation of two observed particles after they have been emitted from a bound state. The correla-
tion function, which is a function of the difference of momenta between two neutrons, is fit and from
that fit, a source size is extracted [27]. Coulomb excitation is used to excite a collective soft dipole
mode in halo nuclei [23]. These measurements excite a bound nucleus and measure the strength
of the E1 transition. From the integral of that strength, one can extract the distance between
the core and the center-of-mass of the two neutrons in the ground state. Reaction measurements
measure the kinematic properties of the fragments after break-up or decay and compare these to
model predictions. These measured values include perpendicular and parallel momentum distri-
butions, energy ratios, and angles between fragments. The work in this dissertation uses reaction
measurements to investigate the correlations from the decay of excited states of 11Li.

The kinematics of a two-body decay, such as the emission of a single neutron or proton, are
very clear: in order to conserve momentum, the two particles are emitted back-to-back in the
center-of-mass frame. The inclusion of a third particle makes this more complex. Conserving
momentum in a three-body decay means all three particles must be emitted in the same plane.
Within that plane, however, there are opportunities for various correlations between the three
particles. In addition, there is the additional factor of timing: could this three-body decay be two
sequential two-body decays?

Much more work has been done with two proton decays than with two neutron decays. Goldan-
sky was the first to predict two-proton radioactivity [28]. Since this paper, the definitions have
gotten a bit more nuanced. Goldansky defined a “true 2p” decay as one where one-proton decay
is energetically forbidden and all products are emitted simultaneously [28]. The first discovery of
two-proton radioactivity like this was in 45Fe [29, 30]. When there is an unbound intermediate
state, the decay can be either sequential or democratic. A sequential decay is defined as one decay
to an intermediate state followed by a second decay to a bound state. The decay of 9B to p + 2α
is a good example, although in this case, one of the two sequential steps is an alpha decay, not a
proton decay [31]. In a democratic decay, there are no strong kinematic correlations between par-
ticles [32]. The decay of the ground state of 6Be provides an example of this type of decay [31,32].
The distinction between sequential and democratic is not cleanly defined, but Bochkarev suggested
a ratio to quantify the difference [32]:

Sequential:
ΓI

E1
k

<< 1

Democratic:
ΓI

E1
k

> 1
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Refs. [58–60]

where ΓI is the width of the potential intermediate state and E1
k is the energy released when

decaying to that intermediate state, shown in Figure 1.8. When the decay is through a narrow
intermediate state, this ratio is much less than one and the decay is sequential. When the ratio is
greater than or equal to one, the decay is democratic.

Though these definitions were mostly developed when discussing two-proton decays, they apply
to two-neutron decays as well. For two-proton decays, the interaction between the two protons
as they leave the nucleus (called a final state interaction) is repulsive, due to the Coulomb force.
Without the Coulomb force, the potential between two neutrons is repulsive at very short ranges
and attractive at longer distances, with the change-over distance being around 1 fm [33]. This
attractive force can correlate the kinematics of the neutrons during the decay even if they were not
correlated while in the nucleus [34]. The decay of strongly-correlated neutrons is sometimes called
a dineutron model.

Experimentally, identification of these decay types is performed by measuring different energy
and kinetic distributions. Dalitz plots were introduced in the 1950s [35, 36], have continued to be
used in high-energy physics, and exist in a slightly modified form in nuclear physics [37,38]. Jacobi
plots of radii, energies, and kinematic variables have been used in understanding correlations in
three-body decays, both proton and neutron [26, 31, 39–49]. When identifying a sequential decay
of an unbound state in 24O to 22O, Hoffman et al. took a slightly different approach and plotted
two different two-body decay energies against each other [50].
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1.6 Previous experiments

1.6.1 Lithium isotopes: A = 11, 10, 9

The first halo nucleus, 11Li, has been the subject of many experiments and many more papers.
The review of previous work presented here will focus on measurements of the energies, spin, and
parities of low-lying unbound states as well as measurements or calculations regarding correlations
between the neutrons and the decay mode. In addition, some details of previous measurements and
calculations of 10,9Li will be discussed.

Table 1.1: Previous measurements of unbound states in 11Li below 5 MeV. The energy shown here
is the excitation energy. When papers reported a decay energy, the two-neutron separation energy
S2n =369.15 keV [51] was added to produce the excitation energy.

Reaction Energy (MeV) Width (MeV) Ref.
11Li(p,p)11Li 1.25± 0.15 Korsheninnikov96 [61]
11Li(p,p)11Li 3.0± 0.2 Korsheninnikov96 [61]
11Li(p,p)11Li 4.9± 0.25 Korsheninnikov96 [61]
11Li(p,p)11Li 1.3± 0.1 0.75± 0.6 Korsheninnikov97 [62]
11Li(Pb,X)9Li+2n 1.1 0.8 Sackett93 [63]
11Li(Pb,X)9Li+2n 1.2± 0.1 0.7± 0.2 Zinser97 [64]
11Li(Pb,X)9Li+2n 2.4± 0.2 2.1± 0.6 Zinser97 [64]
11Li(C,X)9Li+2n 1.24± 0.05 0.26± 0.24 Simon07 [55]
11Li(C,X)9Li+2n 2.45± 0.27 2.91± 0.72 Simon07 [55]
14C(π−,pd)11Li 1.02± 0.07 Gornov98 [65]
14C(π−,pd)11Li 2.07± 0.12 Gornov98 [65]
14C(π−,pd)11Li 3.63± 0.13 Gornov98 [65]
14C(π−,pd)11Li 0.92± 0.15 ≈ 0.3 Gurov10 [66]
14C(π−,pd)11Li 2.29± 0.25 ≈ 0.7 Gurov10 [66]
14C(π−,pd)11Li 3.9± 0.25 < 0.2 Gurov10 [66]
11B(π−,π+)11Li 1.2± 0.1 0.3± 0.9 Kobayashi93 [67]
10Be,14C(14C,X)11Li 2.47± 0.10 1.2± 0.2 Bohlen95 [68]
10Be,14C(14C,X)11Li 4.85± 0.3 < 0.1 Bohlen95 [68]

After the first detection of 11Li [20, 21], Arnold et al. measured the 3/2− spin and parity of
the ground state [57], attributed to a single, unpaired proton in the 0p3/2 orbital. Kobayashi et al.
then measured the parallel momentum distribution of the daughter 9Li fragment after impinging
a 11Li beam on carbon and lead targets [22]. Expanding the targets used to include beryllium,
aluminum, and copper allowed the same group to measure an EMD enhancement, cementing its
halo status [24].

Most of the experimental work of 11Li has focused on the properties of the bound ground
state. The ground state wave-function is known to consist of an admixture of 0p21/2 and 1s21/2
configurations for the valence neutrons (see, for example, Refs. [69–71]). This reflects the level
inversion that breaks the N = 8 magic number, which was also seen in 11,12Be.

With a two-neutron separation energy of 369.15±0.65 keV [51], all the excited states of 11Li are
unbound. A compilation of previous measurements of the energies and widths of unbound states,
organized by reaction mechanism, are presented in Table 1.1. A plurality of the measurements have
used a 11Li radioactive beam on stationary targets [55,61–64] and two experiments have utilized the
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Figure 1.10: Previous measurements of 11Li with excitation energies less than 3.5 MeV.

pions from the Los Alamos Meson Physics Facility [65,66,72]. One measurement used a pion double
charge exchange reaction [67,73] and another used both the 10Be(14C,13N)11Li and 14C(14C,17F)11Li
reactions [68]. Besides a state seen at roughly 1.1 MeV in every experiment except [68], there is
little consistency. Even the possible values for that 1.1 MeV state range from 0.92 to 1.3 keV.
Most of the measured widths have large errors bars, if the authors attempted to place any at all.
A compilation of the previously measured energies is shown in Figure 1.10.

Beyond the spectroscopy of 11Li, considerable interest has been shown in understanding the
correlation between the two valence neutrons. Experimentally, consensus on the correlation between
the two neutrons is difficult to find. Refs. [19] and [27] do agree on the average distance between the
two-neutrons in the ground state. Kobayashi et al.’s 1992 pion charge exchange reaction showed
“hints of a sequential decay process”, but had no firm conclusions regarding the correlation [67,73].
An experiment at Michigan State University compared data from a Coulomb excitation to models
using a phase space decay as well as a dineutron decay and found that the data was fit with a
three-body phase space decay and not with the dineutron model [63,74]. Shimoura et al. performed
the same experiment and found that they could fit their data with a “direct Coulomb breakup
mechanism with an extended ‘dineutron’ model” [75]. Ieki et al. fired back with the first publication
of a spectrum of the cosine of the angle between the two neutrons and claimed it was fit with a
phase-space decay. Zinser et al. also used a Coulomb excitation reaction and could not fit their
neutron-neutron kinetic energy spectrum with a very simple dineutron model [64]. Gornov et
al. found that they required break-up to 9Li and a dineutron to fit the continuum portion of their
missing mass spectrum but found it difficult to pin down a stronger conclusion because the “reaction
mechanism operative in [their] pion absorption measurements is not known” [65]. This assessment
was completely based on decay energy spectra, with no correlation spectra presented. Nakamura
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et al. were able to fit their B(E1) distribution with a three-body model that included two-neutron
correlations in the initial and final states [76], which implied a two-neutron correlation in the ground
state of 11Li. Finally, in 2007, Simon et al. found evidence for sequential decay through 10Li by
constructing “mixed-event” spectra and seeing an enhancement after their Coulomb excitation [55].
It is important to note that the correlation results from Refs. [55,63,64,74,76,77] all used Coulomb
excitation of a 11Li. Since the E1 operator only acts on the center-of-mass coordinate of the
dineutron, all their correlation measurements investigated the ground-state correlations. So far, no
detailed Jacobi analysis as a function of decay energy (like those performed for 6Be in Ref. [47] or
for 14Be in Ref. [78]) has been performed for 11Li.

Most of the theoretical work regarding 11Li has been devoted to understanding the properties
of the ground state and describing both 10Li and the 11Li ground state in a consistent manner.
There have been three main strategies for calculating these properties: large basis shell model
calculations [23, 79], three-body calculations in hyper-spherical coordinates usually achieved by
solving the Faddeev equations [26, 80–84], and by using a two-particle Green’s function [85–89].
Most calculations predict a dineutron correlation in the ground state of 11Li. Reproduction of the
0p1/2 and 1s1/2 percentages in the ground state has proven sensitive to coupling to the continuum
and the presence of a low-lying ` = 0 state in 10Li [80], but not to core excitation [83].

There have been few predictions of the unbound level structure of 11Li. One 3/2− excited
state was predicted by Aoyama et al. [90]. Garrido and collaborators predicted 13 unbound states
below 2 MeV [82]. Predictions of the correlations of neutrons beyond the bound ground state
have also been rare. In 1992, Esbensen and Bertsch predicted that the neutrons released from the
E1 excitation of the soft dipole mode would be emitted with an anti-correlation in the opposite
directions, as did Hagino in 2009, using the same method [86, 89]. The data have not shown this
anti-correlation though. Sackett and Ieki argued there was no correlation while the data from
Shimoura showed a correlation between the two neutrons emitted in the decay [63, 75, 77]. As one
of the two sub-systems in the Borromean nucleus 11Li, an understanding of 10Li is essential for
three-body calculations. The locations of states in 10Li are used to create the n+9Li potential
used in those calculations [18, 87, 91]. As an example, the inclusion of a low-lying ` = 0 state in
10Li significantly increased the percentage of 2s21/2 configuration in the ground state of 11Li in a

three-body calculation by Esbensen, Bertsch, and Hencken [87].
The 10Li nucleus was confirmed as unbound by Poskanzer et al. in 1966 [104]. The first

measurement of the mass was performed almost a decade later by Wilcox et al. who measured
the neutron separation energy at −0.81 ± 0.25 MeV [92]. Fifteen years later, Amelin et al. used
the 11B(π−,p)10Li reaction to measure the energy of 10Li and measured a lower separation energy
of -0.15±0.15 MeV. This figure has since been revised to approximately -50 keV based on many
measurements of a lower-lying ` = 0 virtual state [52–56]. A compilation of previous measurements
of low-lying states in 10Li is given in Table 1.2. Many of the measured energies disagree with one
another and the spins have only been tentatively assigned by one experiment where they were based
on expected doublets from coupling a 1s1/2 or 0p1/2 neutron to the unpaired 0p3/2 proton [99]. A
review of the 10Li picture generates the following two conclusions: the ground state decays by the
emission of an ` = 0 neutron and a state around 580 keV decay energy decays by the emission of
an ` = 1 neutron. This puts the ground state as a negative parity state and at least one excited
positive parity state around 580 keV decay energy.

Some measurements have indicated another state between the negative parity ground state and
the state around 580 keV [19,64,99,101], but such a state hasn’t been measured since 2003. Figure
1.11 shows previous measurements of low-lying positive parity states. Zinser et al. asserted that
this low-lying state was an ` = 0 decay based on the trend of the first four data points in the decay
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Table 1.2: Previous measurements of low-lying unbound states in 10Li under 2 MeV. The energy
shown here is the decay energy.

Reaction Energy (MeV or fm) Width (MeV) ` Ref.
9Be(9Be, 8B)10Li 0.8± 0.25 1.2± 0.3 Wilcox75 [92]
11B(π−,p)10Li 0.15± 0.15 < 0.4 0 Amelin90 [93]
11B(7Li,8B)10Li ≥ 0.1 < 0.23 0,1 Young94 [94]
11B(7Li,8B)10Li 0.538± 0.062 0.358± 0.023 1 Young94 [94]
11Li(C,X)10Li < −20 fm 0 Zinser95 [95]
11Li((Pb,C),X)10Li 0.21± 0.05 0.12+0.1

−0.05 0 Zinser97 [64]
11Li((Pb,C),X)10Li 0.62± 0.1 0.6± 0.1 1 Zinser97 [64]
11Li(p,pn)10Li 0.42 1 Kobayashi97 [96]
11Li(p,n)11Be* −16+4

−7 fm 0 Shimoura98 [52]
11B(π−,p)10Li 0.48± 0.1a 0.5± 0.1 0 Gornov98 [97]
11B(π−,p)10Li 0.1± 0.1 0.4± 0.1 0 Gornov98 [97]
11B(π−,p)10Li 0.7± 0.2 0.1± 0.1 1 Gornov98 [97]
14C(π−, dd)10Li 0.4± 0.07 0.3± 0.07 Gornov98 [97]
9Be(9Be, 8B)10Li 0.5± 0.06 0.4± 0.06 1 Caggiano99 [98]
18O(9Be,X)10Li < −20 fm 0 Thoennessen99 [53]
10Be(12C,12N)10Li 0.24± 0.04 0.1± 0.07 1 Bohlen99 [99]
9Be(13C,12N)10Li 0.53± 0.06 0.35± 0.08 1 Bohlen99 [99]
9,10Be(13,12C,12N)10Li 1.4± 0.08 0.2± 0.07 0,2 Bohlen99 [99]
11,12Be(9Be,X)10Li < −20 fm 0 Chen01 [100]
9Li(d,p)10Li 0.35± 0.11b 1 Santi03 [101]
9Li(d,p)10Li 0.77± 0.24 Santi03 [101]
9Li(d,p)10Li < 0.2 Santi03 [101]
11Li(C,X)10Li 0.68± 0.1 0.87± 0.15 1 Simon04 [102]
11Li(C,X)10Li < −40 fm 0 Simon04 [102]
9Li(d,p)10Li 0.38 0.2 1 Jeppesen06 [54]
9Li(d,p)10Li −13 to −24 fm 0 Jeppesen06 [54]
11Li(C,X)10Li −30+12

−31 fm 0 Simon07 [55]
11Li(C,X)10Li 0.51± 0.044 0.54± 0.16 1 Simon07 [55]
11Li(C,X)10Li 1.486± 0.088 < 2.2 Simon07 [55]
11Li(p,pn)10Li 0.566± 0.014 0.548± 0.03 1 Aksyutina08 [56]
11Li(p,pn)10Li −22.4± 4.8 fm 0 Aksyutina08 [56]
14C(π−,(dd,pt))10Li 0.7± 0.05 < 0.2 Gurov11 [103]
12C(π−,pt)10Li 0.7± 0.05 < 0.2 Chernyshev13 [72]
12C(π−,dd)10Li 0.78± 0.15 0.5 Chernyshev13 [72]

aA single resonance at 0.48±0.1 MeV and two resonances at 0.1±0.1 and 0.7±0.2 MeV were both used to fit the
data.

bA single resonance at 0.35±0.11 MeV and a pair of resonances at 0.77±0.24 and < 0.2 MeV fit the data equally
well.
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Figure 1.11: Previous measurements of unbound, positive-parity states in 10Li. Measurements
reported without error have arrows for error bars. Two different measurements in Chernyshev’s
2013 paper produced two different measurements of 0.7±0.05 and 0.78±0.15 MeV, here the weighted
average is used [72].
aBoth Gornov’s 1998 paper [97] and Santi’s 2003 paper [101] found two possible fits for the data.
Details are in Table 1.2 and footnotes within.
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energy spectrum but then used an ` = 1 lineshape to fit the data, remarking “We are aware that
this may not be the ideal parametrization of a virtual s state ... but have done so to be consistent
with other papers on the subject” [64]. Other measurements in this energy region may not have
seen this state because of poor statistics, overwhelming background, or significant population of
the nearby (and broad) ground state.

If there were a positive parity state around 200 keV, it and the 580 keV state would likely
correspond to the 1+, 2+ doublet that arises from coupling a p3/2 proton with a p1/2 neutron. Only
one experiment has assigned spins and parities to these states [99]. These assignments were based on
expected spins and parities due to coupling and the selectivity of the reaction mechanisms used and
assigned the states at 240 and 530 keV with spins and parities of 1+ and 2+, respectively. Although
this experiment was not expected to populate the wide ground state that could overshadow the
low-lying positive parity state, the statistics were quite low and had significant background.

The ground state of 9Li has been identified as 3/2− [59] while the first excited state, at 2.69
MeV has a spin and parity of 1/2− [58–60].

1.6.2 Beryllium isotopes: A = 12, 11, 10

The isotope 12Be is located in the same island of inversion as 11Li [10, 17, 105–110]. The ground
state is expected to have a significant contribution from two neutrons in the 1s1/2 orbital. A
low-lying 2+ state and a low-lying isomeric 0+ state confirm a nearby 1s1/2 orbital and high
spectroscopic overlap with the ground state of 11Be confirms a significant contribution from a
1s21/2 configuration [10, 108, 111]. In addition to the ground state structure, studies have been

performed on the three bound states: 2+, 0+, and 1− [107, 108, 111]. A 0− state is expected to
complete the 0−, 1− doublet from a valence neutron configuration of 0p11/21s

1
1/2, but a bound 0− has

not yet been found [112]. Very little is known about the higher-lying states, only two of which have
been observed [113–116]. Both of those observed states have been above the one and two-neutron
separation energies. A level diagram of all the measured 12Be states and their relation to states in
11Be and 10Be is shown in Figure 1.12.

The lower of the two unbound states was first measured at 4559±25 keV with a (t, p) reaction
[119]. More than 15 years later, Fortune et al. repeated the reaction and reported a resonance
energy and width of 4580±5 keV and 107±17 keV, respectively [114]. Since 1994, the state has
been identified in four different reactions: 10Be(14N,12N)12Be, 9Be(12C,9C)12Be, 14C(12C,14O)12Be,
and 11Be(d, p)12Be [120].

Although the state has been identified in multiple reactions, the assigned spin and parity have
changed since the first measurement and have stirred recent debate. At the time of the first
measurement, Fortune et al. assigned this state a spin and parity of 2+ based on a comparison
of angular distributions to theoretical Distorted Wave Born Approximation (DWBA) calculations
[114]. More than fifteen years later, however, Fortune and Sherr revised that assignment to 3− based
on a private communication from J.D. Millener, who suggested that the population of the state
was too strong to be a second 2+ state [121]. After that re-assignment, Garrido et al. performed
three-body calculations which suggested that the spin and parity were 0+, though both 1− and 3−

assignments also could fit [122, 123]. Those three-body calculations were an extension of previous
calculations that had been performed for the bound structure of 12Be [84].

Since all these unbound states are unbound to both one and two neutron decay, some under-
standing of 11Be and 10Be is needed. As mentioned previously, 11Be is also located in the island of
inversion. Its ground state is 1/2+ [8, 124] with a dominant configuration of 1s1/2 for the valence
neutron [125, 126]. The only bound excited state, at 320 keV, is the 1/2− state [124], when the
valence neutron is primarily in the 0p1/2 state. There have also been measurements of several
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Figure 1.12: Level diagram of states in 12,11,10Be, relative to the ground state of 12Be. Neutron
separation energies are from [117, 118]. Bound and resonant state energies are from [107, 108, 111,
113–116].

unbound states [115,116], shown in Figure 1.12. The ground state of 10Be is 0+, while the first 2+

state is located at an excitation energy of 3.37 MeV [115].
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Chapter 2

Theoretical background

The decay of an unbound resonance is defined by a central energy and a width. Those can be
measured directly from the data, but it can be difficult if not impossible to de-convolute the effects
of resolutions and geometric acceptances to arrive at a spectrum that could be compared to other
data sets. One solution to this is to perform a simulated experiment. This allows for the fitting of
the energy and width through manipulation of an input decay energy distribution while properly
accounting for experimental resolutions and acceptances. This chapter describes the theoretical
background behind the lineshapes used to describe the single neutron and two neutron decays
measured in this experiment.

2.1 Single neutron decay

Resonant decays, like those from neutron-unbound nuclei, can be described by a Breit-Wigner
lineshape. Though the justification for the use of this lineshape takes many forms [127–130], the
single neutron decay derivation here follows the R-matrix derivation presented in Thompson and
Nunes [131]. A full derivation is beyond the scope of this document, but an outline of the derivation
will be presented here. The reader is directed to Thompson and Nunes [131] as well as Lane and
Thomas [129] for more detail.

2.1.1 R-matrix derivation

R-matrix theory is commonly used to describe nuclear scattering events. In this case, the one
or two-proton knockout is assumed to be a direct reaction, populating the unbound state, which
promptly decays. This is mapped onto R-matrix theory as inelastic scattering from one entrance
channel to a different exit channel. Near the end, a simplification will be made to factor out
dependence on the entrance channel.

R-matrix theory divides the calculation into two sections corresponding to physical regions: the
interior and the exterior region. In the interior region, the particles interact with each other via the
strong force and in the exterior region, they do not. The line of demarcation is the “channel radius”
a, chosen at a distance where this can be assumed to be true. In the interior, the wavefunctions
are constructed from the nuclear Hamiltonian. The R-matrix basis functions are constructed to
have a fixed logarithmic derivative, β, at the radius a. The wavefunctions resulting from the
diagonalization of the Hamiltonian in the R-matrix basis are matched at the radius a with the
scattering wavefunctions in the exterior region. Here, R-matrix phenomenology is used to derive
a resonance lineshape that will be fit to the data, rather than to make a prediction based on an
assumed Hamiltonian. The lineshape will have pole energies Ep and reduced width amplitudes γpα
as its fitted parameters.
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The elements of the R matrix at a scattering energy E for the uncoupled case are defined as:

Rα′α(E) =
P∑

p=1

γpαγpα′

Ep − E
(2.1)

where α indicates the entrance channel, α′ is the exit channel, P is the number of poles, and the
subscript p specifies a specific pole. The scattering S matrix is defined as:

S =
t1/2H− − aRt1/2(H−′ − βH−)

t1/2H+ − aRt1/2(H+′ − βH+)
(2.2)

Here, the matrix t has diagonal elements tα = ~2/2µα where µα is the reduced mass of the channel

α. H− and H+ are also diagonal matrices with elements H
+/−
α = Gα ± iFα where Gα and Fα

are the irregular and regular solutions to the Coulomb wave equation and related to J-type Bessel
functions. These functions are ` and E dependent, but the notation for those dependencies is
included in the channel subscript α for simplicity. Equation 2.2 can be rewritten as

S = (t1/2H+)
1− aR(H−′/H− − β)

1− aR(H+′/H+ − β)
. (2.3)

Now define a diagonal ‘logarithmic’ matrix, L, in terms of H+ as well as in terms of a shift matrix,
δ, and a penetrability matrix, P:

L ≡ H+′/H+ − β =
1

a
(δ + iP− aβ)

The diagonal shift and penetrability matrices have elements

δα = (ḞαFα + ĠαGα)Pα

Pα =
kαa

F 2
α +G2

α

where the dot indicates a derivative with respect ρ = kαr instead of r. Though the logarithmic
matrix is defined in terms of H+, its complex conjugate can be expressed in terms of H−:

L* = H−′/H− − β.

Using these definitions, the elements of the S matrix can be rewritten as

S = Ω(tH−H+)−1/2 1− aRL*

1− aRL
(tH−H+)1/2Ω

where the matrix Ω has diagonal elements Ωα = eiφα and φα are hard-sphere phase shifts. The
product of diagonal matrices tH−H+ can be rewritten in terms of the channel velocities v, with
elements vα = ~kα/µα:

(tH−H+)α =
~vαa
2Pα

The cross section for scattering from channel αi to channel α is proportional not to the matrix S,
but the symmetric matrix S̃, which is constructed with a similarity transformation S̃ ≡ v1/2Sv−1/2,
and simplifies to

S̃ = Ω[1 + 2iP1/2(1− aRL)−1RP1/2]Ω.
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This general equation simplifies with one assumption: a single pole (energy level, designated by
E0) and only two channels. Two channels must be considered because the desired description is
one where the entrance and exit channels have the mass partitioned differently. This means that
the final cross-section calculation will be performed with S̃12 = S̃21:

S̃12 = eiφ1

[
i
√
2γ1P

1/2
1

√
2γ2P

1/2
2

(E0 − E)(1− aR11L1 − aR22L2)

]
eiφ2 (2.4)

The following definitions for formal width Γα, δ
0
α, energy shift ∆α, total energy shift ∆T , and total

formal width ΓT can be substituted in Equation 2.4:

Γα = 2γ2αPα

δ0α = δα − aβ

∆α = −γ2αδ
0
α

∆T = ∆1 +∆2 = −γ21δ
0
1 − γ22δ

0
2

ΓT = Γ1 + Γ2 = 2γ21P1 + 2γ22P2.

The value of −aβ can be set at any constant value and in this work it has been set to −aβ = δα(E0)
as suggested by Lane and Thomas [129]. Once those definitions have been included, the expression
for S̃12 is much simpler and already looks like a Breit-Wigner:

S̃12 = eiφ1

[
iΓ

1/2
1 Γ

1/2
2

(E0 − E +∆T ) + iΓT /2

]
eiφ2 . (2.5)

All that remains is to substitute Equation 2.5 into the following equation for the cross-section to
go from entrance channel αi to exit channel α:

σααi(E) =
π

k2i

2Jt + 1

(2Ipi + 1)(2Iti + 1)
|S̃12|2 (2.6)

=
π

k2i

2Jt + 1

(2Ipi + 1)(2Iti + 1)

ΓαiΓα

(E − E0 +∆T )2 + Γ2
T /4

(2.7)

In this equation, ki is the wavenumber of the entrance channel, Jt is the total spin of the populated
state, and Ipi and Iti are the spins of the projectile- and target-like fragments in the entrance
channel.

The process of interest here is the decay of an unbound state. The population mechanism
is unimportant. Equation 2.7 can be rearranged to clearly display a factorization of these two
components, the population and the subsequent decay:

σααi(E) =

(
π

k2i

(2Jt + 1)Γαi

(2Ipi + 1)(2Iti + 1)

)(
Γα

(E0 − E +∆T )2 + Γ2
T /4

)
When all that is desired is a lineshape of the E dependence, the first grouping related to the
population can be treated as a constant. In addition, during the decay process, the probability
for decay through the entrance channel is small. As a consequence, Γα >> Γαi and ΓT ≈ Γα and
∆T ≈ ∆α. The lineshape for the decay of a neutron-unbound state then is:

σ(E;E0,Γ0)` = A
Γ`(E;E0,Γ0)

[E0 − E +∆`(E;E0,Γ0)]2 +
1
4 [Γ`(E;E0,Γ0)]2

(2.8)
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where the channel subscripts have been dropped and the dependences on the angular momentum
of the neutron, the decay energy, the central resonance energy, and the energy-dependent width
at E0 (Γ0) have been explicitly stated. Γ0, the width of the decay at E0 is used as a substitute
parameter for the reduced partial width γ2:

Γ0 = 2γ2P`(E0)

which means that Γα (or Γ` in the case of Equation 2.8) is now:

Γ`(E;E0,Γ0) = 2P`(E)

(
Γ0

2P`(E0)

)
. (2.9)

2.1.2 Saturation of resonance lineshape

The energy-dependent Breit-Wigner has as its input parameters a central energy, a width at that
central energy, and an angular momentum index. One peculiar feature of just using the lineshape
and ignoring the magnitude of the prefactor A from Equation 2.8 is that as the width Γ0 increases,
the lineshape becomes saturated. This can be seen by explicitly expanding the dependence of ∆`

on Γ0:

∆`(E;E0,Γ0) = −[δ`(E)− δ`(E0)]

(
Γ0

2P`(E0)

)
and referring to a similar expansion in Equation 2.9. Substituting these into Equation 2.8 produces:

σ(E;E0,Γ0, `) =
A

Γ0

P`(E)/P`(E0)

[E0−E
Γ0

− 1
2P`

(δ`(E)− δ`(E0))]2 +
1
4 [P`(E)/P`(E0)]2

where Γ0 is present only twice. Once in the denominator of the prefactor, where it has a solely
multiplicative impact, and once when dividing the quantity (E0 − E). When the width increases,
Γ0 >> E0 − E and that term becomes small. Far from the peak, the δ`(E)− δ`(E0) term is large
and so the Γ0/(E0 − E) term is negligible.

When that term can be neglected, the only effect of increasing the width of the Breit-Wigner
distribution is to decrease the overall magnitude of the calculation. When the lineshape itself
changes very little, then the sensitivity to the width Γ0 is lost. An example of this saturation can
be seen in Figure 2.1. Especially once experimental resolutions and acceptances are applied, the
difference between the Γ0 = 10.0 and Γ0 = 100.0 distributions, for example, is small.

2.2 Two neutron decay

A single-neutron, two-body decay is entirely determined by the masses of the two particles and
the decay energy of the system. The addition of a third-particle in the decay process increases
the number of degrees of freedom as well as the complexity and options of the simulations. The
three-body decays in this work were modeled by three different types of a decays: a phase space
decay, a sequential decay, and a dineutron decay. Each uses a different method for constraining
these extra degrees of freedom. Details of the implementation of the models in the simulations can
be found in Section 4.4.6.2.
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Figure 2.1: Energy-dependent Breit-Wigner lineshapes with varying Γ0. For all lineshapes, ` = 1
and E0 = 1.0 MeV. All lineshapes have been normalized to the same peak height.

2.2.1 Phase space decay

Just as an isotropic distribution uniformly fills the spherical surface elements, in a phase space
decay of one particle into three daughter particles, the kinematics of the decay uniformly fill the
three-body phase space. The three-body phase space integral, R3 is defined as:

R3 =

∫
δ4(P0 −

3∑
j=1

Pj)
3∏

i=1

δ(P 2
i −m2

i )d
4Pi

where P0 is the four-momentum of the initial state, Pi are the four-momenta of the three particles,
and mi are the rest masses of the three particles. This description includes kinematic factors such
as the conservation of energy and momentum with the first delta function. The products of the
second delta function and the infintesimals also incorporate the density of states:

δ(P 2
i −M2

i )d
4Pi = δ(E2

i − (p2i +m2
i ))dEip

2
i dpid(cos θi)dφi

=
p2i
2Ei

dpid(cos θi)dφi

where pi is the magnitude of the three-momentum, Ei is the energy, and θi and φi are the angular
coordinates of the daughter particles. When the momentum of a particle is large, there are more
kinematic options for its arrangement, as reflected in the factor of p2i /(2Ei). Energies and angles of
the three decay products are constrained by distributions that uniformly fill this three-body phase
space.
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Figure 2.2: A diagram of the sequential decay described.

2.2.2 Sequential decay

The sequential decay model used in this document is based on previously published work by A.
Volya [132,133]. The goal of the continuum shell model is to naturally integrate both the continuum
and shell model descriptions of the nucleus, essential for accurately describing neutron decays which
connect the two spaces. Details beyond this outline are available in Refs. [132,133].

A diagram of a sequential decay is shown in Figure 2.2. An unbound initial state in a nucleus
of mass A has a distribution defined by a central energy E1 and a width, Γ1. One neutron, with
kinetic energy ε1 is emitted in the decay to the intermediate state, defined by another central energy
and width pair, E2 and Γ2. A second neutron with kinetic energy ε2 is then emitted in a decay
to a bound state in the A − 2 nucleus. Here, the continuum shell model is used to calculate a
distribution for the relative energy of the two neutrons Er = ε1 − ε2 as a function of total decay
energy E (note that E is the continuous variable indicating the total decay energy, as opposed
to E1, which is the central value of the initial state distribution). This explicitly comes down to
calculating dσ(E)/dEr. The energy-dependent Breit-Wigner approximation for the cross-section
due to a single resonance is

dσ

dEr
∝ 1

(E − E1)2 + Γ2
T (E)/4

dΓ(E)

dEr

and the total width due to a sequential decay is

ΓT (E) =

∫
dEr

dΓ(E)

dEr
. (2.10)

The Fermi Golden Rule gives the partial decay width distribution for the sequential process as:

dΓ(E)

dε1dε2
= 2πδ(E − ε1 − ε2)|AT (ε1, ε2)|2 (2.11)

where AT is the total amplitude for the decay. Assuming a spin anti-symmetric pair of neutrons,
the spatial part of AT should be symmetric. Define that total amplitude as

AT (ε1, ε2) =
1√
2

(
A1(ε1)A2(ε2)

ε2 − (E2 − i
2Γ2(ε2))

+
A1(ε2)A2(ε1)

ε1 − (E2 − i
2Γ2(ε1))

)
(2.12)

where A1 and A2 are the single-particle decay amplitudes for the two decays. This assumes that
the two neutrons are in a spin-antisymmetric singlet state with a symmetric position component.
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Specifically, the implementation included here assumes that the two neutrons came from the same
orbital and are coupled to a Jπ of 0+.

With a substitution of E = ε1 + ε2 and E2 = E + S, where S is the difference between the
energy of the intermediate state and the initial energy, Equation 2.12 can be rewritten as

AT (ε1, ε2) =
1√
2

A1(ε1)A2(ε2)[S + ε2 − i
2Γ2(ε1)] +A1(ε2)A2(ε1)[S + ε1 − i

2Γ2(ε2)]

[S + ε1 − i
2Γ2(ε2)][S + ε2 − i

2Γ2(ε1)]
(2.13)

At this point, it is useful to know the energy dependence of A1 and A2. The energy dependence
can be understood in the following way. Γi is defined as 2π times the square of the single-particle
amplitude and it can also be defined as an energy-dependent single-particle decay width, γ`(ε),
multiplied by a spectroscopic factor, Si. Put another way,

Γi = 2π|Ai(ε)|2 = γ`(ε)Si. (2.14)

The single-particle decay width can be approximated with the calculated width for a neutral
particle in a square well [134]. This width has a slight mass dependence, so the decay for mass A to
mass A−1 will be slightly greater than that for the decay of A−1 to A−2. In this work, however,
that difference is small, so the energy dependence (in γ`) is separable from the index dependence
(in Si). Equation 2.14 can be used then to simplify 2.13:

AT (ε1, ε2) =
−1√
4π

√
γ`(ε1)γ`(ε2)S1S2[2S + E − i

2(Γ2(ε1) + Γ2(ε2))]

[S + ε1 − i
2Γ2(ε2)][S + ε2 − i

2Γ2(ε1)]

Finally, substitute this into Equation 2.11 and write the differential in terms of the relative
energy Er:

dΓ(E)

dEr
=

1

8π
γ`(ε1)γ`(ε2)S1S2

∣∣∣∣∣ 2S + E − i
2(Γ2(ε1) + Γ2(ε2))

[S + ε1 − i
2Γ2(ε2)][S + ε2 − i

2Γ2(ε1)]

∣∣∣∣∣
2

(2.15)

This defines the relative energy of the two neutrons for a sequential decay.

2.2.3 Dineutron decay

Like the sequential decay theory, the dineutron decay theory is also based on work previously
published by A. Volya [132,133]. The amplitude for the decay is:

AT (εK , εI) =
A1(εK)A2(εI)

εI − (E2 − i
2Γ2(εI))

Instead of ε1 and ε2 for the energies of the neutrons, let εK be the kinetic energy of the dineutron
and εI be its intrinsic energy. The initial state energy, E1 is the sum of those energies: E1 = εK+εI .
A1 and A2 are the amplitudes of the emission of the dineutron (the first step) and the separation
of the dineutron (second step). Putting this directly in the Fermi Golden Rule (Equation 2.11)
produces

dΓ

dεKdεI
=

1

2π
δ(E1 − εK − εI)

Γ1(εK)Γ2(εI)

(εI − E2)2 + Γ2
2(εI)/4

. (2.16)

Assume that both the decay of the dineutron from the fragment and the decay of the dineutron
itself can be parametrized as an s-wave decay. The decay width of a neutral ` = 0 particle in a
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square well derived by Bohr and Mottelson [134] is used then to define Γ1 and Γ2:

Γ1(εK) =
2~2

mDR
kK (2.17)

Γ2(εI) =
2~2

µr
kI (2.18)

where mD is the mass of the dineutron (2m), µ is the reduced mass (m/2), R is the channel radius
for the dineutron separating from the A−2 daughter fragment defined by R = r0[(A−2)1/3+21/3],
r is the channel radius for the breakup of the dineutron, defined by R = r[11/3 + 11/3], and r0 is
the scaling factor that parametrizes that radius, here set to 1.4 fm.

The value for the “intermediate” state enegy E2 is not as obvious as in the sequential decay.
As the intrinsic energy εI goes to zero though (or in this case gets very small relative to E2), the
denominator must be proportional to 1/as + ikI where as is the s-wave neutron-neutron scattering
length to satisfy the effective range approximation. Associated with this scattering length is an
energy, ε0, defined as:

ε0 =
~2

2µa2s
.

To make the denominator proportional, the width Γ2(εI) should be equal to −2kIasE2, which
defines the “intermediate” state energy E2 as:

E2 = − ~2

µr0as
= −ε0

2as
r0

.

Using the definition for ε0 and the following definitions for εI and εK ,

εK =
~2k2K
2mD

εI =
~2k2I
2µ

Equations 2.18 and 2.17 can be re-written as

Γ1(εK) = 2
|as|
R

√
ε0εK (2.19)

Γ2(εI) = 4
|as|
r

√
ε0εI (2.20)

Substituting Equations 2.19 and 2.20 into Equation 2.16 produces:

dΓ(E1)

dεI
=

1

π

√
(E1 − ε1)ε1(

1 + rεI
2asε0

)2
ε0 + ε1

r

R

which defines the distribution of the intrinsic energy of the dineutron.
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Chapter 3

Experimental techniques

3.1 Beam production

The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) in
July and August of 2012. A 13B beam was provided by the Coupled Cyclotron Facility (CCF) [135]
and the A1900 Fragment Separator [136] using the process of projectile fragmentation [137]. A
schematic of the CCF and A1900 is shown in Figure 3.1. Ions of 18O3+ were injected into the K500
cyclotron, where they were accelerated to an energy of 10.91 MeV/u. They then traveled to the
K1200 cyclotron where they immediately passed through a stripper foil that stripped off the rest
of their electrons. These fully ionized nuclei were accelerated through the K1200 and emerged fully
stripped at an energy of 120 MeV/u.

After the K1200 cyclotron, the oxygen beam impinged on a Be production target (2491 mg/cm2),
creating a wide variety of fragments. All these fragments entered the A1900 Fragment Separator,
which was set to the magnetic rigidity of the desired 13B secondary beam to filter out most other
fragments. A 300 mg/cm2 aluminum wedge was included at the dispersive midplane of the A1900
to separate nuclei of different charge that entered the wedge with the same magnetic rigidity.
Energy loss through the aluminum wedge is proportional to Z2 where Z is the charge of the
nucleus. Different elements that entered the wedge with the same magnetic rigidity left with
different rigidities, allowing them to be filtered out by the magnets after the wedge. The 13B beam
was delivered to the experimental vault with an energy of 71 MeV/u, corresponding to a magnetic
rigidity of 3.2271 Tm.

In addition to the 13B beam, the CCF and A1900 also provided a 12B beam. The primary beam,
target, and degrader were all the same in the production of the 12B beam, but the magnet settings
were different. The 12B beam arrived at the experimental vault with an energy of 71 MeV/u and
a magnetic rigidity of 2.97720 Tm.

3.2 Beam detector and target

As it left the A1900, the beam passed through a timing scintillator (named the A1900 scintillator)
that was optically coupled to a photomultiplier tube (PMT). Ten meters downstream, upon entering
the experimental area (shown in Figure 3.2), the beam hit a thin plastic timing scintillator, called
the target scintillator. The 0.254 mm thick target scintillator was made of BC-404 and optically
coupled to one PMT. At a location 1.04 m downstream of the timing scintillator, the beam impinged
upon a 51.37 mg/cm2 beryllium target. Such a thin target was able to be used because of the high
beam rate, which was approximately 800,000 Hz on target.

25



18O3+ (10.91 MeV/u)

18O8+ (120 MeV/u)

13B (71 MeV/u)

C
ou
pl
ed
C
yc
lo
tr
on
s

K500

K1200 Be production target
(2491 mg/cm2)

Aluminum wedge
(300 mg/cm2)

A1
90
0 F

ra
gm

en
t S

ep
ar
at
or

Figure 3.1: Schematic of the Coupled Cyclotron Facility and A1900 Fragment Separator with the
production setting for this experiment.
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Figure 3.2: Schematic of the experimental area.

3.3 Sweeper magnet

Unreacted beam, charged reaction fragments and neutrons leaving the target entered the Sweeper
magnet [138]. This large-gap dipole magnet had a bending angle of 43.3 degrees and a radius of
1 meter. The Sweeper magnet bent the trajectories of the unreacted beam and charged reaction
fragments into a suite of charged particle detectors while the neutrons, unaffected by the magnetic
field, continued straight through a vertical gap of 14 cm into the neutron detectors MoNA and
LISA, detailed later in Section 3.5. The maximum magnetic rigidity for the Sweeper magnet is 4
Tm. For reactions with the 13B beam, the magnetic rigidity of the Sweeper was set to 3.76 Tm.
For reactions with the 12B beam, it was set to 3.71 Tm. Both settings were set to center the 9Li
fragments in the detectors and minimize the amount of unreacted beam interacting in CRDC1.

3.4 Charged particle detectors

After the Sweeper magnet was a large vacuum box containing a suite of detectors for the charged
fragments. The positions of the particles was measured with Cathode Readout Drift Counters
(CRDCs), the energy loss was measured in an ion chamber, the time of flight was measured with a
plastic timing scintillator, and the total remaining energy was measured with a CsI(Na) scintillator
array.

3.4.1 Blocker

A 25.4 cm x 13 cm x 9.5 mm tungsten blocker was located at the entrance to the Sweeper detector
box. In this experiment it sat just off the entrance of the beamline into the box, not blocking the
active area of any detector. Most of the unreacted beam was bent into the blocker.
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Figure 3.3: Schematic of CRDC operation modified from [139] where the z-direction has been
expanded for detail. The field shaping wires mentioned in the text are not included for visibility
and simplicity.

3.4.2 Cathode Readout Drift Counters

Two CRDCs were positioned along the beam line. The first CRDC was positioned immediately
after the blocker (1.72 m from the target) and the second was located 1.55 m downstream from the
first. The active area of each CRDC was 30 cm x 30 cm in the xy-plane. Each detector was filled
with a gas mix of 20% isobutane and 80% CF4 at an operating pressure of 300 Torr.

Each CRDC operated similarly to a two-dimensional ion chamber optimized for position. A
schematic of the operation is shown in Figure 3.3. The passage of charged particles through the
detector created ionization pairs in the gas, which drifted apart due to an applied electric field. In
this experiment, the field was created by the application of a 1000 V drift voltage between a plate
at the top of the detector and the Frisch grid near the bottom of the detector. Field shaping wires
were placed at regular intervals on the two faces of the detector and parallel to the x-direction.
Above the Frisch grid was a charged anode wire (parallel to the x-axis) and a series of 116 aluminum
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Figure 3.4: Schematic of ion chamber.

cathode pads with a pitch of 2.54 mm in width, segmented along the x-axis. Once the electrons
drifted through the Frisch grid, they felt the strong field created by the anode wire. This field
caused an avalanche of electrons, increasing the number available for detection. The y-position
of the particle was determined by the drift time of the electron, measured as the time difference
between the thin timing scintillator near the end of the beam line and the detection of charge along
the anode wire. The x-position of particle was determined with induced cathode readout [140]. In
this method, a charge distribution is induced upon the cathode pads by the avalanche electrons.
The peak of this distribution gives the x-position of the particle.

3.4.3 Ion chamber

A schematic of the ion chamber is shown in Figure 3.4. The active area of the ion chamber was 40
cm x 40 cm and its length was 65 cm. It was filled with P-10 gas (90% argon and 10% methane) at
300 Torr. Windows made of Kevlar filament, 12 µm PPTA (an aramid plastic), and epoxy allowed
the particles to pass in and out of the detector with little energy loss. The upstream window
had an area of 30 cm x 30 cm to match the geometric acceptance of the second CRDC, while the
downstream window had an area of 40 cm x 40 cm, to allow for the spread of the beam. A large
plate at the top of the ion chamber and 16 charge collection pads at the bottom were biased to
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Figure 3.5: A schematic of the thin scintillator, as seen from upstream of the detector.

create a drift voltage of 10 V. As charged particles passed through, they created ion pairs. The
electrons drifted down and were collected on the 16 collection pads which discretized the z-direction
and extended along the x-direction. The charge collected on all 16 pads was used as a measurement
of the energy loss in the ion chamber.

3.4.4 Timing scintillator

A thin timing scintillator sat immediately after the ion chamber to serve as the charged fragment
trigger as well as to measure the time of flight of the particles. The 55 cm x 55 cm x 5 mm
scintillator was made of EJ-204, an equivalent to BC-404, both types of plastic from Eljen and
Bicron, respectively. Two trapezoidal light guides were attached to the top edge of the scintillator
and another two were attached on the bottom. Each light guide was optically coupled to the thin
scintillator and a PMT as shown in Figure 3.5.

Organic scintillators such as this one take advantage of the π-electron structure of the dopant
molecules within the plastic. The electronic energy levels consist of singlet states and vibrational
states which are associated with those singlet states. The spacing between vibrational states that
correspond to a singlet state is much smaller than the spacing between singlet states. At room
temperature, due to thermalization, most of the molecules are in the ground state. As a charged
particle passes through, kinetic energy from the passage of the particle is absorbed by the molecules,
exciting them. Higher excitations are quickly de-excited to the first excited singlet state through
internal conversion. Any vibrational energy is thermalized and most of the affected molecules are
now in the first excited singlet state. This state then decays and emits scintillation light to any
of the states associated with the ground singlet state. This light propagates to the light guides on
either end of the detector. For a timing scintillator, the decay constant associated with this decay
should be small - for EJ-204 this constant is 1.8 ns.

3.4.5 CsI(Na) array

At the end of the beamline, charged fragments were stopped in a CsI(Na) array. A mechanical
design of the array is shown in Figure 3.6. The array consists of twenty-five 3.25” x 3.25” x 2.16”
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Figure 3.6: A mechanical design drawing of the CsI(Na) array.
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Figure 3.7: A schematic of a MoNA LISA bar.

CsI(Na) crystals. There were five assemblies, each of which consisted of one row of five crystals.
When these assemblies were stacked, it produced a 5x5 array. Since the array was centered on
the beamline, the cross-sectional area seen by the beam was 16.25” x 16.25” or 41 cm x 41 cm.
For optical separation and to maximize internal reflection, each crystal was wrapped in reflective
material 0.2 mm thick. Each crystal was optically coupled on its downstream side to a Hamamatsu
PMT R1307 with magnetic shielding. Each PMT was powered by a voltage divider which also
provided a single signal output.

Each assembly was fitted into a stainless steel frame which was bolted to a stainless steel support
structure. This structure sat on the rails of the Sweeper detector box, enabling the CsI(Na) array
to move along the full length of the box. The crystals themselves were hygroscopic and easily
damaged by moisture in the air. To deal with this, a four sided gas cover surrounded the crystals.
When the thin scintillator was pushed up against the cover, it created a five sided box. A gas
inlet allowed the flow of dry air along the face of the crystals without requiring the dry air to fill a
large space. This air flowed over the face of the crystals whenever the detector box was not under
vacuum.

3.5 MoNA-LISA

Both the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array
(LISA) consisted of 144 2 m x 10 cm x 10 cm plastic scintillator bars. The MoNA bars were BC-408
and the LISA bars were EJ-200. Each bar (shown in Figure 3.7) was wrapped in reflective material
to reduce light lost as well as black plastic to prevent ambient light from entering the detector.
When a nuclear interaction occured between the neutron and the hydrogen or carbon atoms in the
plastic, the kinetic energy of that hydrogen or carbon atom was converted to prompt fluorescence
in the same manner as described in Section 3.4.4. Because the neutron to hydrogen mass ratio is so
much larger than the neutron to carbon mass ratio and the recoil is therefore much greater, most
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Figure 3.8: Schematic of the MoNA-LISA-Sweeper electronics set-up.

of the light output came from neutron on hydrogen reactions. The emitted light was funneled to
the ends of the bars via total internal reflection and reflection off the foil wrapping. A shielded
PMT at each end of the bar collected the light and turned it into an electronic signal. MoNA used
Photonis XP2262/B PMTs and LISA used Hamamatsu R329-02 PMTs.

3.6 Electronics and Data Acquisition

The electronics and data acquisition (DAQ) systems have been described in detail in [139,141,142],
but a short overview is provided here and an abbreviated schematic of the systems is shown in
Figure 3.8.

MoNA, LISA, and Sweeper each operated as independent data acquisition subsystems connected
by a “Level 3” system that generated a system trigger and “timestamp” that was relayed to each
system. The system trigger in this experiment was generated solely based on the arrival of a signal
in the left upper (0) PMT of the thin scintillator. The “timestamp” was a unique 64-bit word
generated by a clock in the “Level 3” system. Upon the generation of a system trigger, that trigger
and the “timestamp” were relayed to the three subsystems, which proceeded to read out the data
independently.
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MoNA and LISA had independent but identical electronics set-ups. Each PMT had two outputs,
an anode and a dynode. The negative signal from the anode was used for a local trigger and for
timing. The positive signal from the dynode was used to measure the charge collected in each PMT.
The timing and triggering branch signal went from the anode to a constant fraction discriminator
(CFD). Two outputs from the CFD went to a time-to-digital converter (TDC) and to a Xilinx
Logic Module (XLM) for the subsystem trigger logic. The TDC modules were operated in common
stop mode, where a signal from the detector triggered the start of measurement and the System 3
trigger ended the measurement. The charge branch signal went from the dynode through a passive
inverter to a charge-to-digital converter (QDC) module. This process was duplicated for all 288
PMTs in each subsystem. Charge and timing information for each PMT was read out by the DAQ
computer directly from the QDCs and TDCs.

The electronics set-up for the Sweeper included electronics for each of the three timing scintil-
lators, CRDCs, ion chamber and CsI(Na) array. The A1900 timing scintillator signal was sent to a
time-to-amplitude converter (TAC). The output from the TAC was then sent to an amplitude-to-
digital converter (ADC). The output from the PMT attached to the target scintillator as well as
the output from the four PMTs attached to the downstream thin scintillator were sent through a
CFD into a TDC. All TDCs in the Sweeper DAQ operated in common start mode, where the Level
3 trigger began the measurement and the signal from each individual PMT stopped the measure-
ment. The pad signals from the CRDCs were digitized by Front-End-Electronics (FEE) modules
which sampled the pad pulse and sent the information into an XLM for readout. The signal from
each pad in the ion chamber was sent through a shaper and into an ADC. The output from the
four PMTs attached to the thin scintillator were split to allow for the time measurement described
previously and a charge measurement by delivering the signals directly to a QDC. The signals from
each PMT in the CsI(Na) array were sent through a shaping amplifier and into an ADC. Each time
the system was triggered, all ADCs, TDCs, QDCs, and XLMs were read out by the Sweeper DAQ
computer.

3.7 Invariant mass spectroscopy

Neutron unbound states typically have decay widths on the order of 10-1000 keV with mean lifetimes
ranging from 7×10−20 to 7×10−22 seconds. At a beam velocity of approximately 11 cm/ns, these
nuclei travel 7000-70 fm before decaying. In comparison, the radius of the 9Be target nucleus
is approximately 2.5 fm and the target was 278 µm thick. The short time scale makes direct
measurement impossible. Invariant mass spectroscopy was used to reconstruct the energy released
in the decay, also known as the decay energy.

Assume particle A decays into m daughter particles. Momentum and energy must be conserved
and the cleanest way to do this is by utilizing four-vectors. We equate the four-vector of the original
particle, Pµ

A, with the sum of the four-vectors of the decay products, Pµ
i and then can calculate the
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invariant mass MA of the original particle

Pµ
A =

m∑
i=1

Pµ
i

(Pµ
A)

2 =
m∑
i=1

m∑
j=1

Pµ
i Pjµ

M2
A =

m∑
i=1

M2
i + 2

m−1∑
i=1

m∑
j=i+1

(EiEj − 2~pi · ~pj)

MA =

√√√√ m∑
i=1

M2
i + 2

m−1∑
i=1

m∑
j=i+1

(EiEj − 2~pi · ~pj)

where Mi,j are the masses of the decay products and Ei,j and ~pi,j are the energies and three-
momenta of the decay products.

The decay energy is defined as the difference in mass between the initial and final products, so
we subtract the final product masses to get the equation for the decay energy:

Edecay =

√√√√ m∑
i=1

M2
i + 2

m−1∑
i=1

m∑
j=i+1

(EiEj − ~pi · ~pj)−
m∑
i=1

Mi (3.1)

For a single neutron decay, this simplifies to:

Edecay =
√
M2

f +M2
n + 2EfEn − 2~pf · ~pn −Mf −Mn.

For a two-neutron decay, Equation 3.1 reduces to:

Edecay =
√

M2
T + 2(E2

T − p2T )−Mf − 2Mn.

where
M2

T = M2
f + 2M2

n

E2
T = EfEn1 + EfEn2 + En1En2

and
p2T = ~pf · ~pn1 + ~pf · ~pn2 + ~pn1 · ~pn2 .

It is important to note that when there are more than two decay products, the invariant mass
and decay energy are accurate calculations regardless of decay mechanism (sequential, democratic,
etc.).

3.8 Particle correlation techniques

The mode of decay is primarily illuminated in this work by observing correlations between the
particles through Jacobi and Dalitz plots.
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Figure 3.10: T and Y systems and associated Jacobi coordinates for fragment+n+ n system.

3.8.1 Jacobi coordinates

To construct the Jacobi coordinates, we begin with a three body system, as illustrated on the left
side of Figure 3.9. Each mass mn has a coordinate vector ~xn. By eliminating the center of mass
motion, the system can be redefined with only two relative coordinate vectors ~Xij and ~Y ijk (shown

on the right side of Figure 3.9). The first Jacobi coordinate, ~X is the vector between two particles.
The second vector, ~Y , begins at the third particle and ends at the center of mass of the system
defined by the first two particles. Mathematically,

~Xij = ~xj − ~xi

~Yijk =
mi~xi +mj~xj
mi +mj

− ~xk

where i, j, and k are the indices of particles. An example of this in the general three-body case is
shown on the right side of Figure 3.9.

The rotation of particles through the three indices gives us three different coordinate systems:
~X12 and ~Y123, ~X23 and ~Y231, and ~X31 and ~Y312. For three-body systems with two identical particles,
these three systems, shown in Figure 3.10, are called the T system and the Y systems. The
momentum vectors associated with ~X and ~Y are:

~kx =
mj

~ki −mi
~kj

mi +mj
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~ky =
mk(~ki + ~kj)− (mi +mj)~kk

mi +mj +mk

where ~ki is the momentum vector of particle i.
The specific Jacobi variables used in this analysis are the cosine of the angle θ between the

vectors ~kx and ~ky and the ratio of the energies (Ex/ET ) of the two-body system defined by ~X and
the total three body system:

Ex =
(mi +mj)k

2
x

2mimj

cos θk =
~kx · ~ky
kxky

These variables can be used in one and two-dimensional plots for analysis purposes. Although
each system (T and Y) fully defines the correlations between the particles, sometimes it is easier to
see specific correlations in one or the other. Some example Jacobi plots for phase-space, sequential,
and dineutron decays calculated using the models described in Section 2.2 are shown in Figure 3.11.
For the T-system, the energy ratio shows how the energy is split between the decay of the neutron
pair and the decay between that two-body system and the core. For a dineutron decay, this would
show the energy ratio between the dineutron scattering state and the total decay energy. A large
total decay energy would skew the system toward the “zero” end of the energy ratio spectrum,
while a small decay energy would skew the plot toward the “one” end of the spectrum. The energy
ratio, Ex/ET , in the Y-system is ideal for showing how the energy is shared between the neutrons.
Unequal sharing of the energy is indicative of a sequential decay through a narrow state that is
much closer to the initial(final) state than it is to the final(initial) state. In Figure 3.11, the equally
shared sequential decay line has shoulders which indicate unequal sharing of the energy between
the neutrons. These shoulders are correlated with a long, high-energy tail in the three-body decay
energy distribution. Though the intermediate central energy is half the initial state’s central energy,
neutrons decaying from that high-energy tail are more likely to share the total energy unequally.
The cos(θ) plot for the T-system should, by definition, be symmetric and can also discriminate
between types of sequential decays. The cos(θ) plot for the Y-system shows how correlated the
neutrons are in space: if the angle is large (and cos(θ) ∼ −1), the system has a dineutron-like
structure and if the angle is small (and cos(θ) ∼ 1), the system has a cigar-like structure, with the
neutrons on either side of the core.

3.8.2 Dalitz plots

Dalitz plots are two-dimensional graphs commonly used in high-energy physics to study correlations
in three-body decays. Introduced by R.H. Dalitz in the early 1950s [35, 36], their primary feature
is that they are uniformly filled for a simple phase-space decay. Any correlations or resonances
between the three bodies will show up as an enhancement within a uniformly filled section.

The plots utilize the fact that two coordinates define the kinematics of a three-body system (as
in the Jacobi systems). When Dalitz introduced the plots, he chose two variables constructed from
kinetic energies of the particles [35]. Another option is to plot pairs of squared invariant masses
against each other. If mass A decays to masses i, j, and k, the axes of the Dalitz plot would be m2

ij

and m2
jk. This approach is more commonly used now than the kinetic energy coordinates used by

Dalitz.
The boundary of the uniformly filled area is defined by the kinematics and decay energy of the

system. In Dalitz’s original paper, the boundary was circular [35]. When invariant masses are used,
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Figure 3.11: Example Jacobi plots for a phase space decay (black), a dineutron decay (red), and
a sequential decay (blue). The left column shows Jacobi coordinates from the T-system and the
right column shows Jacobi coordinates from the Y-system. The energy ratios are shown on the top
row and the angular distributions are shown in the bottom row. All distributions are without any
acceptances or resolutions applied. In the cos θ-T system plot, the dineutron and phase space lines
overlap.
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Figure 3.12: Example Dalitz plots for a phase space decay (upper left), a dineutron decay (upper
right), and two sequential decays (bottom row). The sequential decay in the bottom left panel shows
a decay through an intermediate state approximately halfway between the initial and final states,
while the sequential decay shown in the bottom right has a more asymmetric energy distribution.
All distributions are without any acceptances or resolutions applied.
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the shape more often resembles a rounded, skewed triangle. Different total decay energies lead to
different boundaries for the Dalitz plots. When a wide decay energy range is considered, though,
these different boundaries reduces the efficacy of the plot. To restore the uniformity of the filled
area, Marqués and collaborators introduced a normalized invariant mass [37]:

m2
ij =

M2
ij − (mi +mj)

2

(mi +mj + Ed)2 − (mi +mj)2

where mi,j,k are the masses of the individual decay products, M2
i,j is the squared invariant mass of

the two-body system i, j, and Ed is the decay energy. This normalization creates two coordinates
that range from 0 to 1 and which create a circular boundary when plotted against each other.

Just like the Jacobi plots, the Dalitz plots can be used in two-dimensional form or one-
dimensional form, where the one-dimensional plots are simply projections of the two-dimensional
plot. Some example two-dimensional plots are shown in Figure 3.12. The physical intuition and
understanding that can be gained from these plots is similar to that from the Jacobi plots. A
dineutron-like correlation between the neutrons will produce an enhancement near m2

nn = 0 and
m2

cn ≈ 0.5 that will steadily decrease as m2
nn → 1. The decay through a narrow resonance in an

intermediate system will produce a pair of enhancements in m2
cn that will show up as bands in the

two-dimensional plot. The location and widths of those bands will be indicative of the energies
released in the two sequential decays and their widths.
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Chapter 4

Data Analysis

This chapter discusses the steps taken to transform electronic signals to a set of meaningful data
spectra and the simulation used to interpret those spectra.

4.1 Calibrations and corrections

The electronic signals recorded in the data stream were extracted, calibrated and corrected before
they were used in calculations of any sort. This section details the calibration of the individual
detectors.

4.1.1 Charged particle calibrations and corrections

4.1.1.1 CRDCs

The signals from the CRDCs went through a significant amount of processing on their way to
producing a position spectrum. The raw signals included samples of charge found on each pad, the
total charge collected on the anode wire, and the drift time of the electron. The drift time was
measured as the time difference between the collection of charge on the anode and the arrival of the
particle downstream in the thin scintillator. The samples on each pad were combined to give a raw
total charge for each pad and the distribution of charge over the pads was fit to give a pad position
of the particle’s interaction location. Finally, this pad position was converted to an x-position and
the drift time was converted to a y-position.

Certain pads in the CRDCs displayed abnormal behavior. For a good position spectrum, the
behavior of the pads should be as uniform as possible across the entire detector. Pads with abnor-
mal charge collection, identifiable by comparing raw charge spectra, were eliminated from further
calibrations, corrections, and calculations. Examples of charge spectra from good and bad pads are
shown in Figure 4.1. Only one pad, pad 69, was identified as bad in CRDC1, while three, pads 24,
73, and 89, were identified as bad in CRDC2.

Instead of integrating the entire charge collection, each pad in the CRDCs took 0-4 samples
in a Riemann sum approximation to the full integral (Figure 4.2). The samples were counted and
then summed as an approximation of the total charge deposited on that pad.

In this experiment, the number of samples collected varied regularly as a function of y-position
for both CRDCs (Figure 4.3). More specifically, for events near evenly spaced y-positions (approx-
imately 65 mm spacing), the number of samples collected for each pad was less than four. This
spacing was the same as the y-spacing of the electric field shaping wires along the faces of the
detector. To correct for this, the total charge collected on each pad was normalized by the number
of samples collected by that pad for a given event. This allowed accurate comparison of the total
charge collected in each CRDC, known as the pad sum.

After the raw signal from each pad had been normalized to the number of samples, the next
step was to subtract the pedestal, the small current that always ran through the cathode pads of

41



CRDC2 pad 64 raw charge (arb)

0 200 400 600 800 1000

C
ou

n
ts

1

10

102

103

104

CRDC2 pad 24 raw charge (arb)

0 200 400 600 800 1000
C
o
u
n
ts

1

10

102

Figure 4.1: Examples of total charge spectra for two pads in CRDC2. Pad 64 (left) is an example
of a good total charge spectrum and pad 24 (right) is an example of a bad total charge spectrum.
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Figure 4.2: Example charge distribution on CRDC pads as a function of time. A full charge
integration measurement would integrate the shaded area on the left. The sampling method adds
the values of a discrete number of points, as shown on the right.
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Figure 4.3: CRDC y-position versus number of samples collected for each pad (left: CRDC1, right:
CRDC2). Both plots are shown with the z-axis on a log scale. Each CRDC collects fewer samples
at certain regularly spaced intervals along the y-direction, visible in these plots as enhancements
at lower numbers of samples and vacancies at the spectra for four samples.

the CRDCs. When a charged particle traveled through the detector, the charge read out by the
electronics was the sum of the pedestal and the charge generated by the particle’s passage.

To measure the pedestal value of each CRDC pad, the charge in each pad was measured when
no particles were passing through. The distribution of charge collected on the pads was normalized
to the number of samples and then fit with a Gaussian lineshape to extract the centroid - the
pedestal value.

Event by event and pad by pad, the total charge on each pad was determined with the following
equation:

Qpad =
1

nsamples

nsamples∑
i=0

qi − qped

where Qpad was the total charge deposited on the pad, nsamples was the number of samples on that
pad for that event, qi were the individual samples collected and qped was the measured pedestal
charge.

Once the total charge collected on each pad was calculated, the charge distribution across all
the pads was used to find the pad position. A Gaussian lineshape was fit to each distribution, as
shown in Figure 4.4. The central value of the fit was taken as the position of the particle relative
to the set of pads.

The final step was to convert this pad position to an x-position in the lab frame and convert
the drift time to a y-position. Both of these conversions were performed at the same time by
utilizing the tungsten masks in front of each detector and a 17N beam. The masks had a known
pattern of holes and lines. When the beam passed through each hole, that known location was
associated with a pad position and drift time. With enough of these holes and lines illuminated,
linear transformations from pad position to x-position and drift time to y-position were calculated.
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Figure 4.4: An example of a charge distribution fit for CRDC2. The centroid of the Gaussian fit,
shown here by the vertical line, would be used as the position of the particle in this detector.
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Figure 4.5: Left: mechanical design drawing of the CRDC mask. Right: Example of CRDC mask
data from run 157.
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Figure 4.6: A schematic of the CRDC masks and their relation to the lab coordinate frame, the
beam, and the pads in each detector.

An example of the data collected for this calibration is shown in Figure 4.5.
A schematic of the masks and their relations to the lab frame, beam direction, and pad numbers

is shown in Figure 4.6. The magnitude of the slope of the x-position linear fit was defined by the
pitch of the pads - 1/10”. The sign of the slope depended on the orientation of the pad electronics
- CRDC1 had a positive slope, while CRDC2 had a negative slope. Since the collected electrons
drifted upward to the anode of the detector, the sign of the y-position slope was negative. An
additional offset was included in the y-direction to place the central path of the beam along the
y = 0 axis. The offsets for the x-position fit were determined by the mask.

The masks were located 45 mm in front of the detector [141]. Because of this z-offset, particles
going through the same hole at different angles could pass through the detector at different positions.
This effect was corrected by iterating the calibration process. After performing position calibrations
for both CRDCs (and assuming no z-offset), the angle of the particle was calculated and the position
calibrations were performed again, this time accounting for the z-offset. This process was repeated
until the slopes and offsets converged.

Mask data was collected approximately every 48 hours to account for possible drifts in the
detectors. The final slopes and offsets from each pair of calibration runs are shown in Tables 4.1
and 4.2. Since the spread was fairly small and exhibited no drift in positions for the production
data, an average was used for each slope and offset (included in Tables 4.1 and 4.2).

4.1.1.2 Ion chamber

The ion chamber was segmented in 16 pads along the beam direction, each of which registered
a charge collected for each event. While the charge collected in the ion chamber can be used
almost without any calibrations, the data can be cleaned up significantly by removing bad pads,
gain-matching the remaining pads, and applying position and time corrections.
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Table 4.1: CRDC1 mask calibration slopes and offsets from all CRDC1 mask runs. Because there
were so few holes in the y-direction (typically only 3), errors were unreasonably small. Slopes and
offsets have been truncated at the same significance as their CRDC2 counterparts (Table 4.2).

CRDC1 mask run x slope (mm/pad) x offset (mm) y slope (mm/ns) y offset (mm)

25 2.54 -178.0 ± 0.2 -0.19 101
96 2.54 -178.7 ± 0.2 -0.19 99
156 2.54 -178.5 ± 0.1 -0.19 101
240 2.54 -178.7 ± 0.2 -0.19 101

average 2.54 -178.49 ± 0.08 -0.19 101

Table 4.2: CRDC2 mask calibration slopes and offsets from all CRDC2 mask runs.

CRDC2 mask run x slope (mm/pad) x offset (mm) y slope (mm/ns) y offset (mm)

26 -2.54 186.8 ± 0.2 -0.19 ± 0.01 113 ± 2
97 -2.54 186.2 ± 0.2 -0.19 ± 0.01 112 ± 3
157 -2.54 186.7 ± 0.1 -0.19 ± 0.02 112 ± 3
241 -2.54 187.0 ± 0.2 -0.19 ± 0.02 112 ± 3

average -2.54 186.68 ± 0.08 -0.19 ± 0.01 112 ± 1

Pad 1, the second pad from the front, was removed from further calibrations and calculations
because it registered almost a factor of 5 less charge than any other pad during the experiment.

Approximating the ion chamber as 65 cm of argon gas (instead of the P-10 mixture it was),
the incoming 13B beam should have lost approximately 36 MeV in the first half of the detector
and 37 MeV in the second half of the detector. This indicates that the beam did not slow down
significantly as it passed through the detector and that each pad should have collected the same
amount of charge.

To gain match the ion chamber pads, the beam was sent down the center of the ion chamber
and the charge on each pad was measured. One pad, pad 8, was chosen as the ideal pad to which
all others would be gain matched. Each charge distribution was fitted with a Gaussian (see Figure
4.7). Those centroids, qpad, were then compared to calculate a slope, mpad, for each pad:

mpad =
qref
qpad

(4.1)

where qref was the centroid of pad 8.
For each event, the calibrated charge on each pad was calculated by multiplying the charge

collected on each pad by that pad’s slope to produce a calibrated charge value. The total energy
loss through the detector, referred to as the ion chamber sum, was calculated on an event-by-event
basis by summing together the calibrated charge values of all good pads.

The ion chamber exhibited a slight position dependence in the x-direction. In the data shown
in Figure 4.8, a cocktail beam with many different fragments was swept across the entire face of
the ion chamber. The position dependence here was likely caused by inefficient charge collection.
Inefficient charge collection was much more apparent in the cases of a high Z fragment when
more ionization was created and the difference was greater than the resolution of the detector. To
correct this position dependence, the highest Z component of Figure 4.8 (nitrogen) was fit with a
second-degree polynomial with coefficients (a0, a1, and a2) and each summed signal, Qic,sum, was
divided by the value of that polynomial at that x-position to produce the position-corrected value,
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Figure 4.7: An example of fitting used in gain-matching the ion chamber. Left: points show raw
charge signal from pad 4, thick solid line is Gaussian fit to data, and thin vertical line indicates
centroid of “ideal” pad 8. Right: points show gain-matched charge signal from pad 4 and thin
vertical line indicates centroid of “ideal” pad 8.

Table 4.3: Ion chamber position and time correction coefficient values.

Position correction Time correction

Coefficient Value Coefficient Value

a0 129.728 b0 8.93895
a1 -0.01787 b1 119.669
a2 -0.00034 b2 0.460586
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Figure 4.8: Position dependence of the ion chamber. The left panel shows the summed signal from
the ion chamber as a function of CRDC2 x-position when using a cocktail beam. The right panel
shows the position-corrected summed signal from the ion chamber.

Qic,poscorr:

Qic,poscorr =
Qic,sum

a0 + a1x+ a2x2
(4.2)

The fitted coefficients are shown in Table 4.3 and the results are shown on the right side of Figure
4.8.

A slow drift of the signal in the ion chamber over time was noticed during the production runs
(Figure 4.9). This drift did not positively correlate with drift of signals in any other detector. The
position-corrected energy loss was observed to have the following functional form:

b0
t+ b1

+ b2 (4.3)

where t was the run number. The coefficients b0, b1, and b2 were all coefficients to be fitted. The
time dependence was removed by dividing Qic,poscorr by the fit to create a new parameter, Qic,corr:

Qic,corr =
Qic,poscorr

b0/(t+ b1) + b2
. (4.4)

The fitted coefficients for the drift in the ion chamber are shown in Table 4.3 and the results
are shown on the right side of Figure 4.9.

4.1.1.3 Thin scintillator

The thin scintillator was located near the end of the beam line and had four PMTs, attached as
in Figure 3.5. The four PMTs were labeled by a number and a description of their location (Table
4.4). The signal from each PMT was split to measure both total charge collected and the time
of collection. Those raw signals were combined for a measurement of the total energy loss in the
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Figure 4.9: Time dependence of the summed ion chamber signal. The top panel shows the summed,
position-corrected ion chamber signal as a function of run number. The red line is the fitted function
4.3 using parameters from Table 4.3. The bottom panel shows the summed, position-corrected, and
time-corrected ion chamber signal as a function of run number.
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Table 4.4: Thin scintillator locations and gain-matching slopes and offsets.

Location Number Slope Offset Time offset (ns)

Left upper 0 1 0 37
Left lower 1 1 349.819 44.8542a,11.7117b,10.8104c

Right upper 2 1.22494 12.0517 -8.46805
Right lower 3 1.68587 -155.151 25.2282

aruns 1-31
bruns 32-75
cruns 76-245

detector and the time of interaction in the detector. As with the ion chamber, inhomogeneities in
position and time were corrected.

The time and charge signals in each of the thin scintillator’s four PMTs had an inherent position
dependence due to the attenuation through the plastic. In order to construct correct time and
charge measurements, the information from all four PMTs was gain-matched and combined. To
gain-match the four thin scintillator PMTs, the 13B beam was sent down the center of the detector.
Events at the very center of the detector were selected because the light from these events traveled
similar distances to each PMT, so the signals arriving at the PMT would have been equal in
magnitude and travel time.

The charge signals from each PMT were fit with a Gaussian lineshape. The left lower, right
upper, and right lower signals were all gain-matched to the signal from the left upper PMT. For
the linear gain-matching, the slope was determined by the ratios of the widths of the Gaussian
fits while offsets were chosen to put all of the centroids at the same location. Slopes and offsets
from the gain-matching are shown in Table 4.4. An absolute measurement of energy loss was not
required, so calibrations to convert from QDC channels to total MeV were not needed.

Once all four PMTs were gain-matched, their signals were combined to provide a measurement
of the total charge (e) deposited in the detector:

etop =
qLU + qRU

2

ebottom =
qLD + qRD

2

e =

√
e2top + e2bottom

2

where qLU,RU,LD,RD are the gain-matched signals from the left upper, right upper, left lower, and
right lower PMTs, respectively.

The total charge from the thin scintillator exhibited both position and time dependence. The
corrections for both were similar to those for the ion chamber described in Section 4.1.1.2, except
the position dependence was fit with a sixth-order polynomial:

eposcorr =
e∑6

i=0 aix
i
. (4.5)

Figure 4.10 shows the energy loss in the thin scintillator before and after the position correction.
The time drift in the total energy signal was corrected using Equation 4.3 and before and after
spectra are shown in Figure 4.11. Correction parameters for both are shown in Table 4.5.
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Table 4.5: Thin scintillator position and time correction coefficient values.

Position correction Time correction

Coefficient Value Coefficient Value

a0 1053.34 b0 -6.064
a1 0.235699 b1 88.6789
a2 -0.00802787 b2 0.861741
a3 -2.7786e-05
a4 2.30353e-07
a5 3.19837e-10
a6 -2.0901e-12
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Figure 4.10: Position dependence of the charge signal from the thin scintillator. The left panel shows
the total signal from the thin scintillator as a function of CRDC2 x-position when using a cocktail
beam. The right panel shows the position-corrected summed signal from the thin scintillator. The
correction was chosen so that the isotopes of interest (lithium and beryllium) had no position
dependence. The remaining position dependence was primarily for the heavier isotopes, nitrogen
and carbon.
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Figure 4.11: Time dependence of the total thin scintillator charge signal. The top panel shows
the summed, position-corrected thin scintillator charge signal as a function of run number. The
red line is the fitted function 4.3 using parameters from Table 4.5. The bottom panel shows the
summed, position-corrected, and time-corrected charge signal as a function of run number.
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Table 4.6: Calibration parameters for the timing signals from the A1900 and target scintillators.

Parameter Value

A1900 slope 0.1 ns/channel
A1900 offset -134.57 ns

Target slope 0.1 ns/channel
Target offset (run number< 72) −40.4 ns
Target offset (run number≥ 72) −24.1 ns
c0 4.698 ns
c1 128.9 channels
c2 −1.5 ns

To calibrate the time signals from each PMT, only an offset was used, since a slope of 0.1
ns/channel was fixed by the range of the TDC. A 20 ns jitter was included in the timing by the use
of a Field Programmable Gate Array (FPGA). All TDC channels received a start command from
the individual timing detectors and the stop signal was generated by the FPGA. The amount of
jitter varied on an event-by-event basis but since the same stop signal was used for all TDCs, the
jitter was the same for each timing signal within an event. To eliminate the jitter, one timing signal
(the thin left upper PMT) was subtracted from all other timing signals to create a time spectrum
for that detector. This subtraction was done after the slopes were applied to allow for different
TDC ranges.

After the jitter was subtracted, the time calibration was performed using the same event selec-
tion for the charge calibration. The timing signals from the other three thin scintillator PMTs were
fit with Gaussians. The timing offset was calculated to align the mean values of all the Gaussian
fits. Time calibration offsets for the thin PMTs are shown in Table 4.4. The calibrated timing
signals from each PMT were then averaged to form one timing signal from the device:

tthin =
tLU + tLD + tRU + tRD

4
(4.6)

where tthin is the final timing signal and tLU,RU,LD,RD are the timing signals from the individual
PMTs.

Faulty electronics caused some signals to drop out or shift during the experiment. During the
experiment the signal from the left lower PMT jumped twice. The first time was due to a loss of
signal in the middle of run 14 and was not fixed until after run 31. The second was a shift that
was correlated with fixing a double peaking problem in the target scintillator immediately after
run 75. Different offsets, shown in Table 4.4, were applied for each of these sections. In addition,
for a short time during the beginning of the experiment, that same time signal disappeared. For
those events, the time signals from the three remaining PMTs are averaged. This slightly worsens
the timing resolution but allows the inclusion of many more events.

4.1.1.4 Other timing scintillators

Two other timing scintillators were used, one immediately after the A1900 (the A1900 scintillator)
and another approximately one meter upstream from the target (the target scintillator). The target
scintillator had one attached PMT whose signal was split to record both the charge and time. The
A1900 scintillator was located approximately 11 m upstream from the target and the signal from
its one PMT recorded only the time of interaction in the scintillator.
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Figure 4.12: Timing signal from the target scintillator before (left) and after (right) the walk
correction.

Since an absolute value of energy loss through the scintillator was not necessary, the charge
signals were always displayed as raw QDC channel values. The basic time calibrations for both
the target and A1900 scintillators were performed in the same way and used a calibration similar
to that for the thin scintillator PMTs. First, the TDC channel value was multiplied by a slope
of 0.1 ns/ch to convert it to nanoseconds. Second, the FPGA jitter was removed by subtracting
the signal from the left upper PMT of the thin scintillator. Third, an offset was applied so that
the time difference between scintillators reflected the calculated speed of an unreacted beam sent
through the system. Calibration values are shown in Table 4.6.

For events with low charge deposition in the target scintillator, a shift in timing (a “walk”)
was observed (see Figure 4.12). To fix this and improve the timing resolution of the detector the
charge dependence of the timing signal was fit with an exponential function and corrected. The
final correction took the form:

ttarg. = tns − c0e
−q/c1 − c2, (4.7)

where ttarg. was the walk-corrected time, tns was the calibrated but uncorrected time, q was the
charge collected by the PMT, and c0, c1, and c2 were correction parameters. The final calibration
parameters for the target calibration are shown in Table 4.6 and the result is shown in Figure 4.12.

In the first few days of the experiment, the target scintillator exhibited a double peaking as
shown by the black line in Figure 4.13. This was attributed to faulty electronics and fixed ap-
proximately two days into the experiment. Due to the change in electronics required to fix the
double-peaking, the target timing signal required different offsets before and after the change. Val-
ues before and after the change are shown in Table 4.6. The double peaking had a minimal effect
on the beam identification, but if used for the particle identification, would significantly worsen the
resolution. To avoid this, the time of flight from the A1900 scintillator to the thin was used as the
timing signal for the particle identification.
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Figure 4.13: Target scintillator timing spectra from run 41 (black), taken while the target exhibited
double peaking, and from run 90 (blue), taken after the double peaking was fixed.

4.1.1.5 CsI(Na) array

The CsI(Na) array was used sparingly in this analysis because particle identification was achieved
through a corrected time of flight, so extensive calibration of the detector was not required. A
peak-sensing ADC was used to read out the charge collected in each PMT. More extensive cali-
brations were carried out by collaborators at Augustana College but were not used in the current
analysis.

4.1.2 MoNA-LISA calibrations and corrections

Raw output from each MoNA-LISA PMT (576 total) included a charge measurement that reflected
the total light collected by the PMT and a time measurement of the light’s arrival at the PMT. A
series of calibrations converted these signals to a calibrated deposited charge measurement, a time
of interaction in the bar, and a position of interaction along the length of the bar.

Cosmic ray data taken before the experiment was used for most MoNA-LISA calibrations.
Muons from cosmic rays deposit roughly 2 MeV/cm of energy in each detector [143] as they pass
through the detectors at roughly the speed of light [144]. This will deposit approximately 20 MeV
electron equivalent of light into the bar. One MeV electron equivalent (MeVee) is equivalent to the
light deposited by a 1 MeV electron.

4.1.2.1 Charge calibration

The first step in charge calibrations for MoNA-LISA was to roughly gain-match the PMTs by
changing the applied high voltage. Each high voltage was adjusted until the cosmic-ray peak from
each PMT showed up in roughly the same channel. Final high voltage values ranged from 1298.5
to 1951.5 V.

When the detectors were off and the electronics were on, a small current ran through every QDC
channel. When the detectors were on and collecting data, this small current, called a pedestal, had
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Figure 4.14: An example of MoNA-LISA’s charge calibration procedure. The raw charge from each
QDC channel is plotted (left). The cosmic peak around channel 1200 is fit with a red Gaussian
line. The inset shows channels 500 to 2000 with a linear scale on the y-axis. Those values are used
to construct a linear fit whose slope and offset are applied to produce a calibrated charge signal in
MeVee (right).

two consequences. The first was that it offset the true charge collected so that channel 0 did not
correspond to zero energy. The second was that it caused every QDC channel to be read out for
every triggered event, regardless of how many bars registered a real interaction. This deluge of
data to be read-out would cause significant dead time.

The solution to the first problem was to apply a linear calibration to translate the channel
number to a light measurement where the offset value was the same as the peak of the pedestal.
Using the pedestal and muon peak as known values (0 and 20 MeVee, respectively), a linear fit for
each PMT was found. An example of this procedure is shown in Figure 4.14.

The solution to the second problem was to apply a hardware threshold so that channels without
a signal greater than the threshold were not included in the data readout. The thresholds, which
should be above most of the pedestal peak, not at its peak, can only be set in multiples of 16
channels. In this experiment, a mistake in the code for calculating the thresholds set the thresholds
higher than they needed to be; the thresholds for this experiment ranged from 0.4 to 0.9 MeVee.

4.1.2.2 Position calibration

Two of the spatial coordinates (roughly y and z for the array at zero degrees from the incoming
beam) of each interaction were given by the discretization of the bars. The third spatial dimension,
the measurement of the interaction along the bar, was given by the time difference between the
light’s arrival at the PMTs on either end of the detector (see Figure 3.7).

The first step in this process was to convert the channel readout of the TDCs to a time. An
absolute time was not possible, but a slope was applied to convert channels to nanoseconds. This
slope was roughly given by the set range of the TDC (350 ns over 4096 channels is approximately
0.085 ns/channel), but since time resolution was essential, the TDC calibration slope was also
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Figure 4.15: An example of the raw time spectrum during MoNA-LISA’s TDC calibration proce-
dure. A pulser pulses the system every 40 ns, creating a spectrum with peaks at intervals that
correspond to 40 ns.

measured with a pulser that pulsed the system every 40 ns, generating a pulse structure as seen in
Figure 4.15. The peaks were fitted and the difference between various peaks was used to generate
a linear fit to convert channel difference to time difference. In MoNA, those slopes centered around
0.083 ns/channel with a full range between 0.08 and 0.09 ns/channel (Figure 4.16). In LISA, those
slopes centered around 0.089 ns/channel with a full range between 0.081 and 0.092 ns/channel
(Figure 4.16).

With the PMT times calibrated, the next step was to convert the time difference between the
two PMTs to a position along the bar. Cosmic-ray data was used to illuminate the entire length of
the bar uniformly. An example of the raw data is shown in Figure 4.17. The edges of the step-like
distribution are the edges of the bar, designated as -100 and 100 cm. To set the position calibration,
a linear slope was calculated from those two points and then an offset was used to place the center
of the bar at 0 cm.

4.1.2.3 Time calibrations

The measurement of a time difference between the interaction at the target and the interaction of
the neutron in MoNA-LISA was crucial to the operation of the device. While the position along
the bar was determined by the time difference between the two PMTs, the time of the interaction
was determined by an average of the two times and then an offset to appropriately place the time
of the interaction within the time of all the other interactions in the detector.

The known velocity of the cosmic-ray muons, v, was utilized to calibrate the timing of each bar
relative to the bottom bar of its vertical layer. Only events that triggered a majority of the bars in
the layer and deposited approximately 20 MeV in each bar were used. Then, for each bar, a time
difference, ∆ta0, and path distance, ∆da0, between the interaction point in that bar (a) and the
bottom bar (0) were calculated. The value of

∆ta0 −∆da0/v (4.8)

was plotted, which should be centered at zero if the time offsets for bar a are correct. If the
Gaussian distribution was not centered at zero, an offset was added to the time calibration of bar a

57



TDC slope (ns/channel)

0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094

N
u
m
b
er

of
P
M
T
s

0

5

10

15

20

25

0

5

10

15

20

25

MoNA

LISA

Figure 4.16: TDC slope values for MoNA and LISA.
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Figure 4.17: X-position calibration example. The final x-position spectrum (right) for one bar was
calculated based on the time difference between the two PMTs (left).
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Figure 4.18: Schematics showing the differences used to calibrate the time measurement in MoNA-
LISA. The view on the left is from the front of the array and the schematic on the right shows the
side view of the array, looking head-on at the PMTs.

Table 4.7: Final time offsets for each table of MoNA-LISA, before and after the electronics change.

Time period MoNA offset (ns) LISA at 0◦ offset (ns) LISA at 30◦ offset (ns)

Before run 76 433.83 411.295 409.901
Run 76 and after 429.103 406.392 405.25

so that it was. At this point, the velocity of the muon, when calculated using the time and position
of interactions within a single vertical layer, should be measured accurately. The left diagram of
Figure 4.18 shows these interactions and the differences used.

Once each vertical layer was “tied together in time”, the next step was to link layers on the
same table (right diagram of Figure 4.18). Specifically, the time of each vertical layer needed to be
calibrated relative to the time of the bottom bar in the front layer. The same process was used,
but this time utilizing events that had interacted in the bottom bar of the front layer as well as in
the top bar of other layers. From this, each vertical layer received an additional time offset that
was applied to all its bars.

At this point, each table of bars (1 table for MoNA and 2 for LISA) are time calibrated relative
to all other bars on that table. The final step was to place each table appropriately in time relative
to interactions in the target. This required data from the experiment where a thick target was
placed in the target position. The 13B collided with the thick target, creating many gamma rays.
Based on the locations of the bars relative to the target, a final offset was applied to all bars in
each table such that the velocity of the gamma rays was 29.98 cm/ns. Two different sets of offsets
were applied because the electronics that created the start signal for MoNA-LISA changed part of
the way through the experiment. Both sets of final offsets are shown in Table 4.7. As a final check,
Figure 4.19 shows the timing spectra for all three tables as well as vertical lines to indicate the
expected arrival times of γ-rays and neutrons from the thick target.
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Figure 4.19: Calibrated timing spectra for each table. Impinging the beam on a thick target
produced many γ-rays and neutrons. Vertical lines indicating the expected arrival of γ-rays and
neutrons at the front of that table. The left panel shows the time-of-flight to the MoNA table, the
center panel shows the time-of-flight to the first LISA table, and the right panel shows the time-of
flight to the second LISA table.

4.2 Event selection

Once the information from each detector was calibrated, information from different detectors was
combined to make a specific measurement. Essential to each specific measurement is the selection
of data events with the necessary information. This section details how almost 200 hours of data
was reduced to roughly 3 hours of useful events.

4.2.1 Beam identification

Event selection began by identifying the 13B component of the incoming beam. Components of the
beam were identified by removing the target and allowing the beam to enter the Sweeper detector
box. The magnetic rigidity of the beam as it entered the vault was 3.2271 Tm. At this rigidity,
the velocity of the desired 13B beam was 11.1 cm/ns. A 14C contaminant traveled the distance
between the A1900 and target scintillators 8 ns faster than the 13B and was identifiable in a plot of
energy loss in the ion chamber against the time-of-flight between the two detectors (Figure 4.20).
Separation of the 13B from the 14C contaminant was achieved with a time-of-flight gate between
85 and 92 ns, as shown in Figure 4.20.

A similar process was repeated to identify and isolate the 12B beam, which arrived in the
vault with a rigidity of 2.9772 Tm. A 13C contaminant was clearly visible in the energy loss vs.
time-of-flight spectrum. The velocity of the 12B beam was also 11.1 cm/ns, so the same time-of-flight
was used to separate the 12B beam from the contaminant as was used for the 13B beam.

4.2.2 Event quality gates

The detectors did not always behave in a uniform and expected manner. Events in which the ex-
perimental system behaved abnormally could lack information from a detector or contain incorrect
information. The gates described in this section were used to remove those events from the data
stream.
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Figure 4.20: Beam component identification using energy loss through the ion chamber (y-axis),
and time-of-flight from the A1900 scintillator to the target scintillator (x-axis).

The incoming beam rate was approximately 800 kHz, slightly less than one beam particle every
microsecond. Within the approximately 400 ns range of the TDCs then, there was a possibility
that another particle could go through the beamline, cause scintillation, and record a time. In this
case separate detectors would have measured the time for different beam particles, resulting in a
different time-of-flight than expected.

The frequency of the cyclotron was 21.8259 MHz, so these events with errorneous time measure-
ments should show up as smaller “echos”, separated by 46 ns, as seen in Figure 4.21. This figure
shows the time difference between the A1900 scintillator, 11 m upstream from the target, and the
thin scintillator near the end of the beamline. The echos were eliminated by a time-of-flight gate
as indicated by the vertical lines in Figure 4.21.

In other events, the position information from the CRDC was not considered reliable. The
y-position was measured by the time difference between the particle interacting in the thin scintil-
lator and the collection of the charge carrier at the anode of the CRDC. In some events, the charge
carrier wasn’t collected at the anode and the y-position measurement was unable to be made.

The x-position measurement was also compromised in some events. To calculate the position
accurately, charge needs to be induced on multiple pads. Some events showed abnormally low total
charge across the pads. In addition, some events showed an abnormally high charge collection,
possibly in connection to multiple particles passing through the detector. These events were elim-
inated by gating on the total charge summed over all the pads (the pad sum). Those gates are
shown in Figures 4.22 and 4.23.

When the x-position was calculated by fitting the charge distribution across the pads with a
Gaussian, several variables were stored, including the centroid, the width, and the χ2 value for the
fit. A limit on the maximum χ2 value removed events with bad x-position fitting and is shown in
Figure 4.23.
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Figure 4.21: Time difference between the A1900 and thin scintillators, showing “echos” from events
in which the A1900 scintillator recorded the time of a different particle than the thin scintillator.
The vertical lines indicate the limits of the gate used to eliminate these events.
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Figure 4.22: Event quality gates applied to the CRDC1 parameters TAC (left) and pad sum (right).
Red vertical lines with arrows indicate the requirements for an event to pass through the gate.
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Figure 4.23: Event quality gates applied to the CRDC2 parameters TAC (left), pad sum (center),
and χ2 (right). Thick red vertical lines indicate the requirements for an event to pass through the
gate.

4.2.3 Isotope identification

Many products were expected from the 13B+9Be reaction. Primarily, isotopes with a Z and A less
than or equal to that of the beam were created. The magnetic rigidity of the Sweeper (3.76 Tm
for 13B) restricted the isotopes successfully traversing the magnet to those with magnetic rigidities
within an acceptance window. For the Sweeper, this was roughly the rigidity of the magnet plus or
minus 8%. For this experiment, nuclides within that range included 14,15B, 10,11,12Be, 7,8,9Li, and
6He.

Element identification was achieved by measuring the energy losses through the ion chamber
and the thin scintillator. Although elemental separation can be seen in the individual PMTs of the
thin scintillator as well as the individual pads of the ion chamber, two-dimensional gates on the
elements produced a cleaner identification (see Figure 4.24).

The next step was isotopic separation. Ideally, a dipole magnet should separate the isotopes by
magnetic rigidity. In practice however, the distributions are broad enough that they overlap one
another and make isotope separation more difficult. The Sweeper magnet convolutes x-position,
x-angle, and time-of-flight. This convolution must be untangled for clean isotope identification. A
detailed description of the process can be found in [139], but an overview as well as the final results
are presented here.

The convolution can be seen using a three-dimensional plot of x-position, x-angle, and time-of-
flight (Figure 4.25) gated on one element, in this case, lithium. The goal was to find a combination
of parameters to correct the time-of-flight for variances in x-position and x-angle. To do this,
this three-dimensional plot was projected down to the x-position-x-angle plane and the contours
guided the convolution of x-position and x-angle into a new parameter. When this new parameter
was plotted against time-of-flight, three two-dimensional groups of events were visible - isotope
separation. The final goal was isotope separation from one single time-of-flight parameter, so the
time-of-flight was corrected for this convoluted x-position-x-angle parameter.

The large gap in the magnet caused a dependency on the y-position and y-angle. The time-of-
flight was corrected for both of these parameters as well as the energy loss through the ion chamber
in a similar fashion to correcting for the x-position-x-angle convolution. Parameters and correction
factors used to construct the final time-of-flight parameter are shown in Table 4.8. To create the
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Figure 4.24: Element identification.

final separation parameter,

ToFcorr = ToFA1900−thin +
P∑
i=0

cipi

where ci and pi are the coefficients and correction factors noted in Table 4.8, ToFcorr is the corrected
time of flight, and ToFA1900−thin is the time of flight from the A1900 to the thin scintillator.

This time-of-flight correction for lithium could be used the separate the beryllium isotopes as
well, but the separation was better when a separate set of corrections were used. Those parameters
are shown in Table 4.9. Separation of the lithium and beryllium isotopes in coincidence with an
interaction in MoNA-LISA is shown in Figure 4.26. The 12Be peak is small because creating 12Be
from the beam requires all the neutrons to remain in the fragment. The same plot for isotopes

Table 4.8: List of correction factors used to produce the lithium isotope separation parameter. The
numbers in the right column were multiplied by the parameter on the left, summed, and added to
the time-of-flight from the A1900 to the thin to produce a corrected time-of-flight parameter for
the lithium isotopes from the 13B beam. Both position parameters, x and y, were calculated 12.59
cm downstream of CRDC1.

Parameter Correction factor Parameter Correction factor

x −1.14× 10−1 θx 1.8× 10−1

x2 −3.6× 10−4 θ2x 1.95932× 10−4

y 5.29126× 10−3 θ3x −8.54275× 10−6

y2 6.90292× 10−4 ∆Eic.corr 13.0485
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Figure 4.25: Three-dimensional plot showing lithium isotope identification by plotting x-position,
x-angle, and time-of-flight.

Table 4.9: List of correction factors used to produce the beryllium isotope separation parameter.
The numbers in the right column were multiplied by the parameter on the left, summed, and added
to the time-of-flight from the A1900 to the thin to produce a corrected time-of-flight parameter for
the lithium isotopes from the 13B beam. Both position parameters, x and y, were calculated 12.59
cm downstream of CRDC1.

Parameter Correction factor Parameter Correction factor

x −6.5× 10−1 θx 1.00191851
x2 −2× 10−3 θ2x 1.95932× 10−3

y 5.29126× 10−3 θ3x −8.547275× 10−6

y2 2.8× 10−3 ∆Eic.poscorr 60
ToFA1900−thin 2.55
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Figure 4.26: Lithium (top) and beryllium (bottom) particle identification from the 13B beam and
in coincidence with an interaction in MoNA-LISA.
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Figure 4.27: Lithium (top) and beryllium (bottom) particle identification from the 12B beam and
in coincidence with an interaction in MoNA-LISA.
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created from the 12B beam is shown in Figure 4.27. In this figure, 11Be is the fragment created by
removing a proton and leaving all the neutrons in the nucleus, so it is smaller than the 10Be peak.

4.2.4 Neutron interaction selection

Though MoNA-LISA was designed to detect neutrons, it also detected some background radia-
tion. This background consisted primarily of muons from cosmic rays and gamma rays from the
surrounding environment or from reactions in the target. The neutron interactions needed to be
separated from these interactions.

The raw neutron time-of-flight spectrum in coincidence with 9Li is shown in the top panel of
Figure 4.28. The bottom panel shows the charge versus time spectrum for the interactions in MoNA-
LISA. For each event, there could be multiple interactions in MoNA-LISA; these histograms only
show the first interaction in MoNA-LISA, sorted based on interaction time. The one-dimensional
histogram has three main features: a sharp peak around 36 ns, a wider peak around 70 ns, and a
large background component. The two-dimensional histogram shows that the peak around 70 ns
deposited a lot of charge, the peak around 36 ns deposited a small amount of charge, and the back-
ground also deposited a small amount of charge. Not shown in the two-dimensional spectrum are
all the first interactions in MoNA-LISA that generated a time measurement but whose total charge
deposited was below the QDC threshold. These events constituted the majority of the background
component and the sharp peak around 36 ns.

Cosmic ray background interactions would have deposited 20 MeVee of energy in the detector
and appear as a horizontal band in the two-dimensional spectrum. Such a band is not visible,
therefore any background from cosmic rays was negligible.

The shape of the background in the top panel Figure 4.28 was due to three factors: the staggering
of the time ranges for the three sections of MoNA-LISA, the time ordering of the interactions, and
the high beam rate.

The first interaction in MoNA-LISA could occur anywhere within the detector, so Figure 4.28
contains interactions from MoNA and both tables of LISA. The time window of each table, however,
was slightly different. This softened the sharp edges expected of the background. Separating this
spectrum into the individual spectra from each Table (Figure 4.29) shows that the perceived bump
around 15 ns is the beginning of the background collected from the MoNA table. In addition, the
γ-ray peaks and neutron peaks from each table become sharper.

The time-ordering process also skewed the time-of-flight spectrum, particularly the background.
If the background was evenly distributed across time, then for events in which multiple interactions
are registered, this spectrum only shows the time of the first interaction, which is guaranteed to be
before the time of the second interaction. This is illustrated in Figure 4.30. The top panel breaks
down the events with two interactions in the first table of LISA. The distributions for the first and
second interactions are noticeably different, with the first interaction spectrum (the one that would
be included in Figure 4.28) skewed toward smaller times-of-flight. The bottom panel shows the
distribution of events with one interaction compared with the summed “two interaction” spectrum
from the top panel.

The background before the γ-ray peak in Figure 4.30 is flat, while the background after it is not.
The remaining gentle downward slope is likely due to the high rate of the beam and the abnormally
large γ-ray peak (the γ-ray peak is often one-tenth the size of the neutron peak). The TDCs
registered only the first interaction in each bar, so any background events occurring in the same
bar after another are immediately discarded. The effect of this is to remove events predominantly
from the higher end of the time-of-flight spectrum.

A zoomed-in spectrum of the peak at 36 ns is shown in Figure 4.31. The shape and charge
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Figure 4.28: Top: Raw neutron time-of-flight spectrum. Bottom: Charge deposited vs. time-of-
flight for the first interaction in MoNA-LISA.
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Figure 4.29: A breakdown of the time-of-flight spectrum of Figure 4.28 by sections (tables) of the
detector.

deposition (mostly below threshold) are consistent with γ-ray interactions from a point source, but
the time-of-flight is not - γ-rays from the target should arrive at approximately 26 ns. Separating
the γ-ray peak into the constituent tables (Figure 4.32), shows that each table has a unique time
difference between the expected arrival time and and the measured arrival time of the γ-rays (10.9
ns for MoNA, 10.7 ns for LISA at 0◦, and 13.0 ns for LISA at 30◦). Assuming the source of these
γ-rays was in the experimental area and that the difference in time-of-flight can be correlated with
the distance from that source, these differences can be used to see where in the vault this source
could be.

The expected time difference of gamma arrival at two different detectors was calculated for
every point in the vault. The measured time difference was subtracted from this calculated time
difference. This calculation was done for each pair of detectors and is shown in Figure 4.33. The
source can be located anywhere along the line where this quantity is zero, deliniated by the curved
black lines.

Overlaying all of these zero-lines on the vault layout diagram (shown in Figure 4.34) can give
some indication of where the gamma source could be located. In this case, it appears the γ-rays
are coming from the negative x side of the Sweeper detector box, near the tungsten blocker. This
is close to where the unreacted beam was dumped, so it seems likely that this large γ-ray peak was
coming from unreacted beam being dumped on the tungsten blocker or the wall of the Sweeper
detector box. The expected rate of two incoming beam particles arriving at the same time is small,
but not negligible.

Accounting for the shape of the background is not enough - the neutrons still needed to be
separated. The γ-ray peak was easily separated from the neutron peak by time-of-flight, but the
continuous background underneath was not. It was separated, however, by requiring a certain
amount of charge to be deposited in the bars. Since the QDC thresholds were set abnormally
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Figure 4.30: Top: Time-of-flight breakdown of events with two (and only two) interactions in
the section of LISA at 0 degrees. The blue line shows the first interaction spectrum, while the
green line shows the spectrum of the second interaction. The black line is the sum of those two
components. Bottom: Comparison of the time-of-flight spectrum for events with one interaction
(red line) and the summed spectrum from above (black line). The red line has been normalized to
the flat background before the gamma peak of the black line.
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Figure 4.31: The γ-ray peak in MoNA-LISA during the 13B production runs.
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Figure 4.32: The arrival time of the large γ-ray peak, as observed by MoNA (left), the LISA table
at 0 degrees (center), and the LISA table at 30 degrees (right). Vertical lines indicate expected
arrival time of γ-rays from the target area.
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Figure 4.33: Difference of time differences between two of the three detectors. The left panel shows
the comparison between LISA at 0◦ and LISA at 30◦, and the right panel shows the comparison
between MoNA and LISA at 30◦. Black lines indicate the possible locations of a point gamma
source to produce the measured time difference between the two detectors.

Figure 4.34: The two zero-lines from Figure 4.33 overlaid on the vault layout. The intersection of
these lines indicates the likely location of a point gamma source. Within the error of the calculation,
and given the layout of the experimental vault, a gamma source was identified inside the Sweeper
box.
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Figure 4.35: Final time-of-flight spectrum for MoNA-LISA. This spectrum requires that each in-
teraction not only have a valid charge but also a valid time.

high for this experiment, the lowest requirement of this type that could be made was to simply
have a charge measurement for the event. Including this requirement effectively eliminated the
background.

One concern in requiring a charge measurement was the possibility that while the first interac-
tion might not have had a valid charge and thus not be included as a neutron event, the second (or
third or fourth) interaction might qualify. In this case, the second interaction should be considered
the first, the third the second, and so on. This becomes especially important when looking for the
interactions of multiple neutrons. In an attempt to count the neutron interactions more accurately,
the interaction algorithim was modified. Whereas previously, interactions needed only a valid time
signal to pass the calibration and be incorporated into the data, they now required valid time and
charge signals. The raw data still included all of the information, but the calibrated neutron time-
of-flight spectrum changed. The final time-of-flight spectrum, shown in Figure 4.35, eliminated the
background and enhanced the statistics by mining the later interactions for interactions with valid
charge signals.

4.3 Inverse tracking

All the position measurements were performed after the fragments had been bent by the Sweeper
magnet. In order to retrieve the momentum and position information of the particles at the target,
they needed to be tracked through the magnet. This reconstruction of particle trajectories before
the magnet is fully described in [145], but a summary is presented here.

Ion-optical matrices are used to transform the coordinates of a particle before a magnet to the
coordinates of the particle after it traverses the magnet. Specifically, the Sweeper ion-optical matrix
relates the set of variables (x, θx, y, θy, δ)

(T ) at the target to the variables (x, θx, y, θy,∆L)(D) at
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the detector. In this case, x is the dispersive position, y is the non-dispersive position, and the θ
variables are ratios of transverse momentum in that (x or y) direction over the total momentum:

sin θ(x,y) = p(x,y)/p0.

The variable ∆L is the length difference between the path traveled by the particle and the central
path. The variable δ is the relative energy deviation:

δ =
E − E0

E0

where E is the energy of the particle and E0 is the energy of a particle following the central
trajectory through the magnet. The value of E0 can be determined by the magnetic field of the
magnet.

The forward matrix Mf is defined such that:
x
θx
y
θy
∆L


(D)

= Mf


x
θx
y
θy
δ


(T )

This matrix is useful given the incoming particle information, but that only happens during a
simulation. For the data, this matrix needs to be transformed to one that takes in the measured
variables and gives back the unknown variables at the target- an inverse mapping. There were

measurements of x(D),θ
(D)
x , y(D), and θ

(D)
y and the needed variables were x(T ), θ

(T )
x , y(T ), θ

(T )
y , and

δ.
One way to fix this situation of four input variables and five output variables is to measure

the incoming beam distribution with tracking CRDCs before the target. Then x(T ) and y(T ) are
available and the reconstruction is overdetermined. In this experiment though, the use of tracking
detectors was precluded by the high incoming beam rate.

In this case, the solution was to assume that every particle arrived at the target with x(T ) = 0.
If the beam was centered at x = 0 (or close to it), this assumption will slightly worsen the resolution
of the measurement, but should not shift it. If the beam were not centered, this would result in
a reconstructed energy and x-angle that were also shifted from the input values [145]. A series
of transformations then produce a matrix Mi, which transforms the measured variables to the
variables needed to reconstruct the four-momentum of the fragment at the target:

θ
(T )
x

y(T )

θ
(T )
y

∆L
δ

 = Mi


x(D)

θ
(D)
x

y(D)

θ
(D)
y

x(T )


4.4 Modeling and simulation

The final step in the analysis was to create a simulation, compare it to the data, and use it to
extract values of decay energy and width. An in-house Monte Carlo simulation took into account
the incoming beam profile, reaction, and subsequent decay as well as the geometric acceptances
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Figure 4.36: A flow chart of the simulation process and the various data that are used as input.

and intrinsic resolutions of the detectors. In addition, the simulation was able to reproduce cuts
made on the data for a one-to-one comparison between data and simulation.

Various kinds of data were used as input to determine the parameters of the simulation. A
flow chart is shown in Figure 4.36. During the experiment, the strength of the Sweeper magnet
was measured with a Hall probe. Those values were used to create the ion-optical maps. Several
runs of data were designed to help calibrate the simulation. Runs where the beam was sent down
the central trajectory of the Sweeper magnet (“beam down center” runs) were used to fix the
incoming beam profile. Next, the current running through the Sweeper magnet was changed to
sweep the beam in discrete steps across the active area of the detectors (“step sweeps”). This
data was used to fix the beam energy. The fragment distributions are primarily dominated by
the reaction kinematics, so reproducing those distributions in the simulation sets the reaction
parameters. Finally, the combination of fragment and neutron data was used to extract the decay
parameters such as energy, width, and decay type.

The motion of the charged particles was simulated using an in-house simulation titled st mona.
Acceptances were applied by eliminating particles that did not hit the active area of the detectors
and resolutions were applied by smearing the signals with Gaussians representative of the resolution.
The interactions of the neutrons with MoNA-LISA was modeled with geant4 [146, 147] and the
custom neutron interaction model menate r [148].

4.4.1 Incoming beam parameters

The incoming beam parameters of the simulation were set by duplicating the distributions from
sending the unreacted beam through the detectors. In this data set, the beryllium target was
retracted and an attenuated beam was sent into the Sweeper magnet, which was set to direct the
beam along the central trajectory of all detectors.

In this case, the goal was to duplicate the position and angular distributions at both CRDC
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Figure 4.37: Incoming beam distributions in CRDC1 (top row) and CRDC2 (bottom row). The left
column shows the two-dimensional positional profile, the middle column shows the x-projection,
and the right column shows the y-projection.
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Table 4.10: List of simulation parameters used to recreate the incoming 13B beam profile. Part
1 recreated the horizontal peak around 30 mm in the y-position of CRDC2, Part 2 recreated the
square background, and Part 3 recreated the slanted peak around -20 mm in the y-position.

Simulation flag Part 1 Part 2 Part 3 Significance

cx -0.001 -0.001 0.00 x-distribution centroid
dx 0.008 0.0075 0.004 x-distribution width
ctx -0.004 -0.004 0.001 θx-distribution centroid
dtx 0.005 0.002 0.002 θx-distribution width
cy 0.005 0.00 -0.012 y-distribution centroid
dy 0.00 0.007 0.0005 y-distribution width
fy - 20 - y-distribution shape factor
cty 0.0055 0.00 0.00 θy-distribution centroid
dty 0.0015 0.0085 0.009 θy-distribution width
fty - 20 - θy-distribution shape factor
sxtx -0.82 -0.82 -0.82 Rotation angle between x and θx distributions
sxy - - 0.5 Rotation angle between x and y distributions
scale 20 100 7 Relative intensities of the components

detectors, CRDC1 and CRDC2. A first look at the beam profile in position space (Figure 4.37)
shows that these were not simple Gaussian distributions. It looked like there were three components
to this beam: a horizontal peak around 30 mm in the y-position of CRDC2, a square background
and a slanted peak around -20 mm in the y-position.

Many different parameters were included in the duplication of the beam profile. A summary of
them is shown in Table 4.10 and the final result is compared to the data in Figures 4.38 and 4.39.
An initial estimate of the beam energy and spread was taken from the information from the A1900
group. Initial x, y, θx, and θy distributions were created and then tweaked. Most distributions
were modeled as Gaussian and so were defined by a centroid and a width.

The exception to this were the y and θy distributions for the second component, the square
background. These distributions were defined with a generalized normal distribution:

Ae−(|x−µ|/α)β

where µ, α, and β are parameters that can be varied. In this case, µ varies the location of the
centroid, α scales the width of the distribution, and β is a shape parameter. When β = 2, this
is a normal distribution with centroid µ and width α. In the limit that β = ∞, this is a uniform
density from µ− α to µ+ α.

A correlation between x and θx was necessary to reproduce the beam profile. The correlation
was imposed on an event-by-event basis. A random value was picked for each of the two independent
distributions and then a rotation was imposed upon that coordinate pair.

The same process was used to reproduce the 12B beam. Those beam parameters are given in
Table 4.11 and a comparison between data and simulation is shown in Figures 4.40 and 4.41.

4.4.2 Beam energy

The energy of the incoming beam was determined by the magnetic rigidity of the last magnet before
the target and the energy spread was set by momentum slits located upstream of the experimental
setup. The use of the slits created an energy distribution that was similar to a step function, so
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Figure 4.38: Simulated (blue) and data (black) position and angular spectra for the incoming 13B
beam profile. Top row: CRDC1 x-position, CRDC2 x-position, and x-angle. Bottom row: CRDC1
y-position, CRDC2 y-position, y-angle.
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Figure 4.39: CRDC2 position spectra from data (left) and simulation (right) for the incoming 13B
beam.

Table 4.11: List of simulation parameters used to recreate the incoming 12B beam profile. Part
1 recreated the horizontal peak around 30 mm in the y-position of CRDC2, Part 2 recreated the
square background, and Part 3 recreated the slanted peak around -20 mm in the y-position.

Simulation flag Part 1 Part 2 Part 3 Significance

cx 0.00 0.00 0.00 x-distribution centroid
dx 0.0055 0.0055 0.004 x-distribution width
ctx -0.003 -0.003 0.003 θx-distribution centroid
dtx 0.002 0.002 0.002 θx-distribution width
cy 0.004 0.00 -0.012 y-distribution centroid
dy 0.005 0.007 0.0005 y-distribution width
fy - 50 - y-distribution shape factor
cty 0.004 0.00 0.00 θy-distribution centroid
dty 0.0015 0.0085 0.0009 θy-distribution width
fty - 20 - θy-distribution shape factor
sxtx -0.82 -0.82 -0.82 Rotation angle between x and θx distributions
sxy - - 0.25 Rotation angle between x and y distributions
scale 15 50 20 Relative intensities of the components
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Figure 4.40: Simulated (blue) and data (black) position and angular spectra for the incoming 12B
beam profile. Top row: CRDC1 x-position, CRDC2 x-position, and x-angle. Bottom row: CRDC1
y-position, CRDC2 y-position, y-angle.

81



0

20

40

60

80

100

120

140

160

180

200

CRDC2 x-position (mm)

-100 -50 0 50 100

C
R
D
C
2
y
-p
os
it
io
n
(m

m
)

-100

-50

0

50

100

0

100

200

300

400

500

600

CRDC2 x-position (mm)

-100 -50 0 50 100

C
R
D
C
2
y
-p
os
it
io
n
(m

m
)

-100

-50

0

50

100

Figure 4.41: CRDC2 position spectra from data (left) and simulation (right) for the incoming 12B
beam.

the simulated beam energy distribution was defined by a centroid energy and a width which was
the full width of a step function distribution.

The momentum slits were set at 0.2% dp/p, which corresponded to a 0.4% spread in energy.
For the 13B runs, the quadrupole magnet immediately before the magnet was set at 3.2271 Tm
(71.38 MeV/u). For the 12B runs, this was set at 2.9772 Tm (71.33 MeV/u). The centroid energy
was tuned from these nominal values by comparing simulation to data sets in which the Sweeper
was set to different magnetic rigidities, which moves the centroid of the beam in the dispersive (x)
direction. These “step sweep” data sets (so called because the beam was swept across the detectors
in discrete steps) were also used to confirm that the beam profile does not change as a function of
the optics imposed by the Sweeper magnet. The final beam energy used in the simulation was 71
MeV/u.

4.4.3 Reaction parameters

The 1p- and 2p-knockout reactions were simulated by removing the nucleons from the beam and
giving the unbound system a momentum “kick”. The momentum kick was parametrized based
on the Goldhaber model [149] for parallel momentum distributions and the model proposed by
Van Bibber [150] for perpendicular momentum distributions. In these models, the parallel and
perpendicular momentum kicks are Gaussian in shape and defined by widths, σ‖ for the parallel
distribution and σ⊥ for the perpendicular distribution. These widths were fixed by the observed
position and angle distributions of the fragments and are given in Table 4.12. In addition, a
friction term was included to reproduce the low-momentum tail observed in the data (Figure 4.43)
and commonly attributed to dissipative interactions within the target [151]. This friction term was
created by multiplying every negative parallel momentum kick by a constant factor. In this case,
the factor 2 was chosen to reproduce the tail observed in the data. A comparison of simulation and
data for the 9Li fragments from the 13B beam is shown in Figure 4.42.
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Table 4.12: Widths of the parallel and perpendicular kicks used to reproduce the kicks of the
knockout reaction.

Beam Fragment σ‖ (MeV/c) σ⊥ (MeV/c)
13B 9Li 183 244
13B 11Be 90 180
13B 10Be 122 244
12B 9Li 121 243
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Figure 4.42: Simulated (blue) and data (black) position and angular spectra for the 9Li fragments
from the 13B beam. Top row: CRDC1 x-position, CRDC2 x-position, and x-angle. Bottom row:
CRDC1 y-position, CRDC2 y-position, y-angle. See Section 4.4.5 for information about the cut on
CRDC2 y-position.
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Figure 4.43: Total momentum of the 9Li fragments in the data (black line) and simulation (blue
line).

4.4.4 Other parameters

The target area density of 51.37 mg/cm2 was fixed by measuring the thickness of the target (0.278
mm) with a pair of calipers and converting to area density, assuming natural beryllium composition.
The magnetic field strength used to create the field maps for the Sweeper magnet was fixed by
measurements by a Hall probe inserted in the field of the magnet. The geometric acceptances of
the detectors were also included. Those were based on measurements made before and during the
experiment. Resolutions for MoNA-LISA included a Gaussian resolutions for time measurements
and position measurements along the length of the bar as well as discretization in the directions
perpendicular to the length of the bar [142].

4.4.5 Additional cuts

For a consistent comparison of data to simulation, additional cuts had to be made to both the
simulation and the data. As an example, intrinsic limits on the data due to the finite physical
size of the detectors had to be explicitly imposed upon the simulations. Imposed detector limits
included the x and y limits imposed by the windows in the front and back of the ion chamber, as
well as the CRDCs. The simulated light threshold for PMTs in MoNA-LISA was raised to account
for the high QDC thresholds (Section 4.2.4).

Other cuts were applied to both the simulation and the data. A “notch” of missing data was
observed in the lower half of CRDC2. It was determined that this was an effect of the detector and
not representative of the actual fragment distributions. To eliminate any bias due to this notch,
both the data and simulation were restricted to events above the beam axis (y > 0). Due to the
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Figure 4.44: CRDC1 x-angle versus CRDC1 x-position for a beam sweep run with no target (left)
and for production (right). The red polygon indicates the “sweep” gate.

known non-uniformity in the y-direction of the dipole field within the Sweeper magnet, events were
also required to be within 20 mm of the dispersive plane when they reached CRDC1. Finally,
events that were bent by the Sweeper magnet in a regular fashion had a strong correlation between
x-position and x-angle after the magnet (Figure 4.44). A cut was applied (the “sweep” gate) to
select only those events.

This experiment was not designed to measure the decay of 12Be, so the 11Be fragment was
off-center. The x-position distribution of 11Be fragments should be centered off the −x side of
CRDC2. The experimental spectrum, in contrast with the simulated spectrum in Figure 4.45,
shows the x-position distribution covering the entire detector. This contamination was reduced by
only analyzing 11Be fragments arriving at a CRDC2 x-position of less than -50 mm.

4.4.6 Decay models

Once the fragment distributions were reproduced, the final step was to use the data, specifically
the decay energy plots, to pin down the decay parameters such as energy, width, scattering length,
and decay mode.

4.4.6.1 Single neutron decay

The decay energy for a single neutron decay was modeled as an energy-dependent Breit-Wigner,
as described in Section 2.1.1:

σ`(E;E0,Γ0) = A
Γ`(E;E0)

[E0 − E +∆(E; Γ0)]2 +
1
4 [Γ`(E; Γ0)]2

.

When using this model, the fitting parameters were the centroid energy, E0, the width, Γ0, the
angular momentum of the neutron released, `, and the relative intensity of the lineshape. In this
analysis, this lineshape was used to model the decays of 12Be, 11Be, and 10Li.
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Figure 4.45: Full x-position spectrum for 11Be, data (black line) and simulation (blue line).

4.4.6.2 Two neutron decay

The decays of 12Be and 11Li were modeled as two neutron decays to 10Be and 9Li, respectively.
The decay of 12Be was only modeled as a phase-space decay (Section 2.2.1), while the 11Li was
modeled as a phase-space decay, a sequential decay, and as a dineutron decay. In the two-neutron
12Be, the energy was fixed by minimizing the one-neutron decay energy (from the 12Be→11Be+n
decay) and then converting that to a two-neutron decay energy (for the 12Be→10Be+2n decay).
The width was fixed with a single-particle decay width calculation from Bohr and Mottelson [134].
For the 11Li decay, the total decay energy, total decay width, intermediate decay energy, second
decay width, and the relative intensity were all free fitting parameters.

The two-neutron phase space decays utilized the TGenPhaseSpace class as implemented in
ROOT [152]. The four-vector of the decaying particle and the mass distribution of the decay
products were input and the four-vectors of the three decay products were output. The sequential
decay used the relative energy distribution as defined in Section 2.2.2 to set the energies of the
two decays and then isotropically distributed the two decays. In the sequential decay, the energies
and widths of the two unbound states as well as the angular momentum of each decay were the
input used to create the lineshape. In a similar fashion, the dineutron decay simulation utilized
the energy distribution defined in Section 2.2.3 to define the decay energies that separated the two
neutrons from the charged fragment and the two neutrons. The two “decays” were isotropically
distributed. The inputs for each dineutron lineshape were the central decay energy and the total
two-neutron decay width.
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4.5 Fitting and error analysis

Simulated spectra were compared to experimental spectra using the least-squares fitting method,
commonly called a χ2 analysis. For binned data and simulations, the following test statistic was
constructed:

S =

n∑
i=1

(yexpi − ysimi (α))2

σ2
i

(4.9)

where n is the number of bins, yexpi is the experimental number of events in bin i, ysimi (α) is the
simulated number of events in bin i as a function of the parameter set α, and σi is the error of
yexpi , which is taken to be the square root of yexpi . This test statistic was used for minimization of
parameters and error estimation. This test statistic is commonly referred to as χ2, so for consistency,
that is how it will be referenced throughout the document.

For each comparison of data to simulation, the parameter set α was varied until χ2 was at a
minimum. The least squares method assumes a Gaussian distribution of events within each bin,
which cannot be assumed when the number of events in a bin is small. The inclusion of bins with
very few events could also skew the minimization to place more importance on those events. To
reduce this effect, only bins with more than 5 events were included in any fitting procedure. It is
also possible to use this statistic to test many histograms at once, by simply expanding the sum to
include bins from different histograms.

This test statistic also provides us with a way to estimate the statistical error in the parameter
minimization. The most common way to determine a 1σ statistical uncertainty is by taking the
values of αj at which χ2 = χ2

min + 1. This assumes that the χ2 vs. αj plot is parabolic in shape.
Although the data is not always the perfect linear situation that generated this definition for the 1σ
limit, for consistency with comparison to other data, this method has been used here to estimate
the statistical uncertainty. The minimum of each χ2 vs. αj plot was fit with a parabola and limits
corresponding to χ2 + 1 were extracted.

When multiple parameters were simultaneously minimized (say, α0 and α1), then each point
in the χ2 plot was constructed by fixing α0 and varying all other parameters (α1, α2, ...) until a
minimum was found. This was repeated for multiple values of α0.

During the analysis, it was necessary to fit the same data set with different models. In this
case, a reduced test statistic was used to compare models with different numbers of parameters.
A reduced test statistic was constructed by dividing the original statistic, χ2, by the number of
degrees of freedom. Here, the number of degrees of freedom was defined as the number of bins
participating in the fit less the number of parameters in the set α. This comparison of reduced χ2

was used to select a preferred model.
In addition to the statistical uncertainty in the measured values, the systematic error was

established by varying potential sources of error within reasonable limits and re-fitting that new
spectrum. Previous experience had shown that most sources of systematic error were primarily
associated with the neutron measurements, so the following sources of experimental error were
considered: MoNA-LISA global time offsets and measurements of MoNA-LISA detector positions.
In addition, three values set in the simulation were also varied to fix a systematic error: the
x-position resolution, the time-of-flight resolution, and the threshold set for light collection at the
PMTs.

Some systematic error was also identified from fitting the entire χ2 curve and not just choosing
the parameter set with the lowest χ2. All three of the sources of systematic error in the simulation
produced the same additional error for the 10Li fit even though the histograms simulated with some
error looked almost identical to those with no added error. The same systematic error measurement
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was then generated by fitting a simulation with itself and determined to be due to the curve fitting,
rather than either resolution or the threshold. This error is identified in the systematic error tables
as “Error from fitting.”
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Chapter 5

Results and Discussion

5.1 11Li

The three-body decay energy spectrum for the 11Li system is shown in Figure 5.1. This spectrum
uses the first two interactions in MoNA-LISA that pass a time-of-flight requirement and a charge
threshold, as detailed in Section 4.2.4. These requirements, however, do not ensure that those first
two interactions come from two different neutrons. Figure 5.1 has contamination from neutron
scattering cross-talk: events in which a single neutron interacts in the detector, scatters, and then
interacts again, creating two interaction sites from one neutron.

To eliminate this fake two-neutron signal and enhance the real two-neutron spectrum, a pair of
requirements, known as causality cuts were applied to the data. The first requirement was placed
on the velocity of a hypothetical neutron scattering from the first interaction site to the second
(v12). This velocity was compared to the velocity of the neutron that traveled from the target to the
first interaction site (v01). If v12 < v01, then it is possible that the first two interactions were caused
by the same neutron interacting twice. The first requirement, then, is that v12 > v01. The second
requirement was placed on the distance between the two interaction points. The probability that a
second interaction was caused by the same neutron as the first decreases sharply with the distance
between the interactions. In addition, the discretization in the y and z directions produces an
uncertainty in the absolute position of ∼10 cm, which corresponds to a large uncertainty in v12. In
contrast, the distribution of distances between interactions from two different neutrons is relatively
flat. Figure 5.2 shows the number of real and fake two-neutron events that pass the causality cuts
as a function of the distance used in the causality cut for a phase space decay from a 1.5 MeV state
in 11Li (Γ = 2.0). The cut was set at 50 cm for a combination of efficiency and purity. Though the
efficacy of these causality cuts changes as a function of energy and decay mode, the events that
make it through these causality cuts are approximately 90% real two-neutron events.

These causality cuts were applied to the three-body decay energy plot shown in Figure 5.1 and
the resulting histogram is shown in Figure 5.3. The broad peak around 700 keV appears to be
consistent with previous measurements, though the width appears larger than the measurements
from Refs. [55, 62–64, 66, 67]. There is a suggestion of a state around 2.2 MeV decay energy, but
the statistics are low.

Figure 5.4 shows the Jacobi plots for the 11Li data below 1.6 MeV decay energy and with
causality cuts applied. The most obvious feature is a peak near -1 of the Y-system cos θ spectrum,
indicating directional correlation of the two neutrons. This is supported by the asymmetric T-
system energy ratio in the upper left panel. The lack of sharp peaks in either the Y-system energy
ratio or the T-system angle suggest that the decay does not proceed sequentially through a narrow
state in 10Li.

To go beyond these initial qualitative conclusions requires comparison with the simulation.
Figure 5.5 shows the potential decay paths through which an excited 11Li nucleus could decay. It
could decay sequentially through states in 10Li (red, blue, green, and magenta), or it could decay
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Figure 5.1: Decay energy for the 9Li+n+n system. No causality cuts are applied.
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Figure 5.2: Number of real two neutron events (green, top line), and fake two neutron events (red,
bottom line) that pass the causality cut as a function of the magnitude of the distance cut, based
on a simulation of a phase space decay from 11Li.
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Figure 5.3: Decay energy for the 9Li+n+n system. Causality cuts are applied.

in a three-body decay directly to 9Li by emission of correlated neutrons (dineutron model, orange)
or uncorrelated emission of neutrons (phase space or democratic model, cyan).

The qualitative analysis suggested that a dineutron model will fit best and that a sequential
decay through a narrow state will not fit the Jacobi plots. There are four potential sequential
decays through 10Li. According to Bocharev and Charity [31, 32], the energy difference between
the initial and intermediate states needs to be greater than the width of that intermediate state
for a sequential decay to be possible. Recent work from Egorova et al. set a more stringent limit
with the observation of a “suppression of the sequential decay mechanism in favor of three-body
democratic dynamics” at initial energies below twice the intermediate energy plus the intermediate
width [47]. A decay through a low-lying ` = 1 state in 10Li at approximately 200 keV with a width
of approximately 100 keV fits the description of a sequential decay and would produce sharp peaks
in the Jacobi spectrum that are not seen in the data. This decay (represented by the blue line in
Figure 5.5) is not considered. The lower-lying ` = 0 ground state has a much larger width and
remains in consideration.

The simulation should also include potential single neutron decays from direct population (via
2p1n-knockout) of 10Li. Those potential decays are shown in Figure 5.6. The gray dotted line
indicates population of a higher-lying state in 10Li and subsequent decay to the ground state of
9Li.

In addition to the two spectra seen in Figures 5.1 and 5.3, these two-neutron decay models were
fit to two two-body decay energy spectra: one constructed with all events containing both a 9Li
fragment and an interaction in MoNA-LISA and another constructed with events containing a 9Li
fragment and only one interaction in MoNA-LISA. This second two-body decay energy spectrum
enhances the signal due to one-neutron decay. All four decay energy spectra are shown together in
Figure 5.7.

A fit was performed for each two-neutron decay path from 11Li. Each fit included a single decay
path from 11Li and all five one-neutron decay paths from 10Li. The energies and widths of the states
were allowed to vary, as were the relative initial populations. In all the fits, the first three decay
energy spectra were dominated by contributions from the one-neutron decays from 10Li, while the
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Figure 5.4: Jacobi plots for the 9Li+n+n system. Causality cuts are applied, as well as a require-
ment that the total three-body decay energy be less than 1.6 MeV.
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Figure 5.7: Decay energy plots used when fitting simulation to data. The upper left panel shows the
two-body decay energy in coincidence with 9Li and one neutron. The upper right panel shows the
same two-body decay energy spectrum, but this time requiring only one interaction in MoNA-LISA.
The lower left panel shows the three-body decay energy spectrum, as shown in Figure 5.1. The
lower right panel shows the same three-body decay energy spectrum but with causality cuts, as
shown in Figure 5.3.
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Figure 5.8: χ2 minimization plots for the 11Li energy (left) and width (right), for many different
decay paths.

fourth, causality-gated spectrum was dominated by the two-neutron decay from 11Li. The ratio
of events between the different decay plots was best reproduced with a threshold of 1.0 MeVee for
MoNA-LISA’s PMTs, rather than the initial setting of 0.6 MeVee. This generated an overall better
fit as defined by χ2 and did not influence the energy minimization.

Assuming a single decay path from a single unbound state in 11Li allows another simplification.
Decay through the highest-lying ` = 1 state in 10Li (shown as the magenta decay in Figure 5.6) is
energetically unfavorable, but a decay through the tail of the state could occur if the state were
wide enough. Regardless, given the other potential decay paths, it is unlikely to be the sole decay
path and therefore has been removed from the analysis.

Two χ2 minimization plots for the energy and width of the 11Li state, broken down by decay
path, are shown in Figure 5.8. In general, the minimization pushed the width to unphysical values,
so the width was required to be less than or equal to twice the central energy value. The minimized
energies and widths for each two-neutron decay model are shown in Table 5.1, along with statistical
errors. Three of the models select consistent energies at 840±70, 860±80, and 890±70 keV, while
the phase space model minimizes at a lower energy of 750±70. The phase space decay path, while
a good simple model for reference is considered an unphysical model. A phase space decay assumes
no interactions between the decay products and there is a known neutron-neutron interaction.
Eliminating the phase space result from consideration then shows that the measurements of the
decay energy and width are insensitive to decay mode.

The model with the best fit to the decay energy spectra is a sequential decay through the ` = 0
ground state of 10Li, as suggested by Simon et al. [55]. The best fits from all four decay paths
are shown in Figure 5.9. Although each fit is comprised of a single 2n decay and five 1n decays,
only the summed spectra are shown for simplicity. The Jacobi spectra for each of these best fits is
shown in Figure 5.10. As expected, the dineutron model fits the Jacobi spectra best. The dineutron
lineshapes shown in Figures 5.9 and 5.10 were composed of one two neutron component from Figure
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Table 5.1: Energies and widths for best fits of each two-neutron decay model. Error bars are only
statistical.

Type of 2n decay Decay energy (keV) Width (keV)

Sequential, low ` = 1 860±80 >1300
Sequential, ` = 0 890±70 >1400
Phase space 750±70 >1200
Dineutron 840±70 >1400
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Figure 5.9: The best fits to the decay energy spectra from Figure 5.7 with all four decay models.
The upper left panel shows the two-body decay energy in coincidence with 9Li and one neutron. The
upper right panel shows the same two-body decay energy spectrum, but this time requiring only
one interaction in MoNA-LISA. The lower left panel shows the three-body decay energy spectrum.
The lower right panel shows the same three-body decay energy spectrum but with causality cuts.
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Table 5.2: Energies and widths used for the best dineutron fit shown in Figures 5.9 and 5.10. Decay
through a ∼200 keV ` = 1 state, shown in Figure 5.5, was minimized at zero contribution to the
total spectrum.

State Decay energy (keV) Width (keV) Percent population Color
11Li* 840 1600 9% orange
10Li ` = 0 ground state 50 - 42% red
10Li ` = 1 excited state 650 1000 18% green
10Li ` = 1 excited state 1000 250 8% magenta
10Li ` = 1 excited state 2250 1400 23% gray

Table 5.3: Sources of systematic error in the 11Li “dineutron” decay. Sources of error in the data
are in the top section and sources of error in the simulation are in the second section. Here,
MoNA-LISA is abbreviated with ML.

Associated error
Source Variance Energy (keV) Width (keV)

ML global time offsets ±0.2 ns 20 200
ML detector positions ±2 cm 20 100

ML x-position resolution 3±1cm 10 -
ML time resolution 0.18±0.05 ns 10 -

ML PMT threshold 1.0+0.2
−0.4 MeVee - 100

Error from fitting - 200

Total systematic 30 300
Statistical 70 200

Total error 80 400

5.5 and all one neutron components from Figure 5.6. Those full lineshapes broken down into 2n
and 1n decay path components and displayed against the decay energy spectra in Figure 5.11 and
against the Jacobi spectra in Figure 5.13. Dalitz plots for both data and simulation are compared
in Figure 5.14.

The addition of systematic error (detailed in Table 5.3) increases the error margins so the final
values are a decay energy of 840±80 keV (corresponding to an excitation energy of 1210±80 keV)
and a width greater than 1200 keV. This measurement is compared to previous results in Figure
5.12. It is consistent with 6 of the 8 measurements under 1.5 MeV. Two of those six measurements
are from experiments dominated by Coulomb excitation [63,64]. Coulomb excitation was concluded
to be a direct excitation to the continuum, not a resonant excitation [64, 77], so the two Coulomb
excitation measurements are measurements of peak values of an excitation function rather than
measurements of a resonant state.

The double charge exchange reaction from Kobayashi et al. is expected to primarily populate
positive parity states via the E1 mechanism, whereas a two-proton knockout from the 3/2− ground
state of a 13B beam would favor the population of negative parity states. In a Faddeev calculation
of unbound states in 11Li, Garrido et al. predicted thirteen states of varying parity below 1.6
MeV excitation energy [82], suggesting it is reasonable to populate opposite parity states near the
same energy. The width of the unbound state seems large compared to previous results and the
calculations by Garrido et al.. Given the many potential states in that region and the general lack
of understanding of the unbound structure, there is also the possibility that multiple states were
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Figure 5.10: The Jacobi coordinate spectra (as shown in Figure 5.4) compared to the same spectra
from the best fits of the four decay models.
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Figure 5.11: The best fit to the decay energy spectra of Figure 5.7 with the dineutron model.
Different colored curves show the different components as labeled in Figures 5.5 and 5.6. The
black line shows the summed total. The upper left panel shows the two-body decay energy in
coincidence with 9Li and one neutron. The upper right panel shows the same two-body decay
energy spectrum, but this time requiring only one interaction in MoNA-LISA. The lower left panel
shows the three-body decay energy spectrum. The lower right panel shows the same three-body
decay energy spectrum but with causality cuts.
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Figure 5.12: Previous measurements of 11Li with excitation energies less than 3.5 MeV. The result
from this work is shown by the box.

populated.
The population percentages in Table 5.2 show that approximately 10% of the events came from

decay of an excited state of 11Li while 90% came from unbound states in 10Li directly populated
via 2p1n knockout. A two proton knockout from 13B in a 0s21/20p

3
3/2 configuration has ten different

possible knockout pairs. Knocking out the paired 0p3/2 protons is most likely to populate the
ground state and wouldn’t show up in coincidence with 9Li. Knocking out any of the deeply bound
protons in the 0s1/2 orbital is likely to populate a high energy state in 11Li. At least one of the
neutrons emitted from the decay will have a high kinetic energy and be less likely to interact with
MoNA-LISA. This would make the observed event appear much more like a 10Li decay. Two of
the remaining nine possible knockout combinations (subtracting the one likely to go to the ground
state) only knock out protons from the 0p3/2 orbital and would be available for populating low-lying
excited states in 11Li. The inclusion of real 10Li decays from a 2p1n knockout make the measured
10% a reasonable number.

The dineutron model used here parametrizes the interaction between the two neutrons as an
` = 0 decay with a −18.7 fm scattering length, a value that is based on the neutron-neutron
scattering length measured by Gonzalez Trotter et al. [153]. The use of the −18.7 fm scattering
length is consistent with a democratic or phase-space decay modified by a final-state interaction
between the two neutrons. It is also important to note that both the data and the model indicate
a directional correlation, a correlation in momentum-space. Neither necessarily implies a spatial
correlation of the neutrons within the nucleus.

The cos θ Jacobi spectrum in the Y-system suggests a slight additional correlation between the
two neutrons may be evident in the data (Figure 5.13). As a test, the scattering length was changed
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Figure 5.13: The Jacobi coordinate spectra (as shown in Figure 5.4) compared to the same spectra
from the best fit from the dineutron model. Different colored curves show the different components
as labeled in Figures 5.5 and 5.6. The black line shows the summed total.
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Table 5.4: Best fit parameters as used in Figure 5.18. Quantities with error bars were measured.
Other parameters, such as relative contribution and the width, are reported without error bars,
simply for reference.

Color Energy (MeV) Width (MeV) Percent population

Blue 0.11±0.04 0.2 13%
Green 0.5±0.1 0.8 55%

Magenta 1.1±0.1 1.0 32%

to −100 fm, increasing the directional correlation between the two neutrons. A comparison with
the data and the −18.7 fm fit is shown in Figure 5.15. The simulation with increased correlation
visually appears to be a better fit than the −18.7 fm simulation.

The two sequential decays (11Li→9Li+2n →9Li+2n) used in the dineutron model of the sim-
ulation is a simplification of the physical process. A true calculation should track the neutrons
behavior from inside the nucleus all the way through the decay. The better fit of the −100 fm
scattering length in this model suggests that the data require an additional correlation beyond
the final state interaction parametrized by the −18.7 fm scattering length. This correlation must
come from some interaction inside the nucleus, but any discussion of the source or behavior of this
correlation based on this data and model would be pure speculation.

There was no gamma-ray detection used in this experiment, so though we assume decay to the
ground state of 9Li, it is possible that the decay was to an excited state in 9Li. A previous proton
knockout from Chartier et al., however, found that a single proton knockout from 11Be to unbound
10Li decayed to the first excited state of 9Li only 7% of the time. This, combined with comparison
to previous results, makes decay to the excited states of 9Li unlikely.

5.2 10Li

Like 11Li, 10Li was populated from a two-proton knockout, this time from a 12B beam. The
two-body decay energy in coincidence with 9Li is shown in Figure 5.16. A peak is visible around
500 keV and its full-width at half-maximum is approximately 800 keV. There is also some evidence
of a shoulder around 1 MeV.

The two-proton knockout reaction is expected to selectively populate positive parity states in
10Li. The 1+ ground state of the 12B beam has its three valence protons located primarily in the p3/2
orbital. The odd proton couples with the odd neutron in the p1/2 orbital. The two protons should
principally be knocked out as a pair, which will selectively populate positive parity states. Any
low-lying states will then decay by an ` = 1 neutron to the 3/2− ground state of 9Li. This allows
for the identification of any low-lying ` = 1 states without significant background and without the
broad ` = 0 ground state component obscuring the identification.

The peak around 500 keV is consistent with the previous measurements shown in Figure 1.11.
Most of those measurements, however, measured a width of <500 keV, in contrast with the wide
peak seen in Figure 5.16. Using those measurements as a reference, the decay energy spectrum was
fit with a single ` = 1 decay lineshape whose central energy was constrained between 450 and 650
keV. When the width of this resonance was unconstrained, the minimization procedure pushed the
width to unphysical values. To avoid this, the width was required to be less than or equal to twice
the central energy. With this requirement applied, the best fit of a single ` = 1 decay to the decay
energy spectrum is shown in Figure 5.17.
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Figure 5.14: Dalitz plots for 11Li. The top set is the data and the bottom set is the best fit
simulation using the dineutron model. The data only uses events with a three-body decay energy
less than 1.6 MeV that also passed the causality cuts.
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Figure 5.15: Two different dineutron models in comparison to the experimental data. The solid line
simulation used a scattering length of -18.7 fm while the dashed line simulation used a scattering
length of -100 fm, implying stronger correlation.
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Figure 5.16: Decay energy in coincidence with 9Li and one neutron, populated by two-proton
knockout from a 12B beam.

The residual shown in the lower panel of Figure 5.17 indicates that the fit underpredicts the
lowest portion of the spectrum (<300 keV) and the shoulder area around 1 MeV. Including a single
additional resonance could not fit both of those areas, so a fit with three ` = 1 decays was performed
and is shown in Figure 5.18. The best fit utilized resonances at 110±50 keV (blue), 500±100 keV
(green), and 1100±100 keV (magenta). The widths and relative populations of the fit shown in
Figure 5.18 are shown in Table 5.4. The details of the systematic error are shown in Table 5.5.

The χ2 plots for the lower two resonances are shown in Figure 5.19 and the values measured in
this work have been superimposed on a summary of previous measurements in Figure 5.20. The
resonance measured at 0.5 MeV is consistent with 10 previous measurements, whereas the resonance
at 0.11 MeV is consistent only with the measurement from Santi et al.. Near that energy Young
et al. fit a low-lying resonance with an ` = 0 lineshape but “could be a p wave or an s wave” [94]
and Zinser et al. fit another resonance with an ` = 1 lineshape but stated that it was probably an

Table 5.5: Sources of systematic error in the 10Li decay. Sources of error in the data are in the top
section. The sources of error from the simulation tabulated in Table 5.3 (ML position resolution,
ML time resolution, and ML PMT threshold) were all dominated by the error from the fitting.
Here, MoNA-LISA is abbreviated as ML.

Associated error in energy
Source Variance Blue (keV) Green (keV) Magenta (keV)

ML global time offsets ±0.2 ns 20 10 10
ML detector positions ±2 cm 20 80 50

Error from fitting 10 20 -

Total systematic 30 80 50
Statistical 30 60 100

Total error 40 100 100
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Figure 5.17: A fit of a single ` = 1 decay energy lineshape to the data from Figure 5.16 (top) and
the residual (bottom).
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Figure 5.18: A fit of three ` = 1 decay energy lineshapes to the data from Figure 5.16.
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Figure 5.19: χ2 plots that show the minimization of the central energies of the blue, green, and
magenta lineshapes in Figure 5.18. Dashed lines indicate statistical error and solid lines indicate
the total error margin.
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Figure 5.20: Previous measurements of unbound, ` = 1 states in 10Li (same as Figure 1.11) with the
limits of the new measurements overlaid in blue, green, and magenta lines. Measurements reported
without error have arrows for error bars. Two different measurements in Chernyshev’s 2013 paper
produced two different measurements of 0.7±0.05 and 0.78±0.15 MeV, here the weighted average
is used [72].
aBoth Gornov’s 1998 paper [97] and Santi’s 2003 paper [101] found two possible fits for the data.
Details are in Table 1.2 and footnotes within.
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Figure 5.21: Calculations of 0p1/2 (red) and 1s1/2 single-particle levels of 10Li, 11Be, 12B, and 13C.
Energies of single-particle levels and relevent energy eigenstates are given relative to the calculated
0p1/2 single particle energy level. Dashed line shows the extrapolation of the linear fit to the 1s1/2
single-particle levels. 9He levels are from Ref. [155], 10Li levels are from this work, 11Be and 12B
levels are from Ref. [156], and 13C levels are from Ref. [157].

` = 0 resonance, due to the slope of the lowest three data points [64].
The two lowest-lying positive parity states in 10Li are likely the 1+, 2+ doublet from the coupling

of the single 0p3/2 proton with a neutron in the 0p1/2 state. Within the doublet, the strong Nordheim
rule [154] predicts the 1+ state to have a lower energy than the 2+ state. This assignment is
consistent with that of Bohlen et al. [99], but the energy measured here is approximately 0.1 MeV
lower than in that work. Similarly, the two lowest-lying negative parity states in 10Li are expected
to be 2− and 1− from the coupling of the 0p3/2 proton with the 1s1/2 neutron. The relative
populations of these two states, shown in Table 5.4, is inconsistent with this assignment. The
ground state of 12B is 1+ and two-proton knockout from there is expected to populate the 1+ state
with a higher cross-section than the 2+ state. This measurement was not the primary focus of the
experiment and therefore received limited beam time. More experimental data might resolve these
two peaks and clear up any uncertainty.

Given those spin assignments, the 0p1/2 single particle energy can be calculated using the
weighted average described by Talmi and Unna [15]:

Ep1/2 =

∑
J(2J + 1)EJ∑
J(2J + 1)

(5.1)

where J is summed over the states that results from pairing a 0p1/2 neutron with a 0p3/2 proton.
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Figure 5.22: Calculations by Thompson and Zhukov show the relationship between the 11Li binding
energy and the 10Li 0p1/2 single-particle energy as a function of the 1s1/2 scattering length [80].
The line at -0.369 MeV shows the limits imposed by the measurements of Smith et al. [51] and this
thesis.
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The same sum can be made for Es1/2 . Talmi and Unna postulated that “the change in interaction
energy of a p1/2, or s1/2, neutron when two p3/2 protons are removed is twice the change due to
the removal of one p3/2 proton” [15]. Their paper extrapolated that linearity from measurements
of 12B and 13C to 11Be and predicted that the 1s1/2 level would be 0.21 MeV below the 0p1/2 level,
only 0.11 MeV away from the measured 0.32 MeV level difference. When that same linearity is
extrapolated out to 10Li (Figure 5.21), it predicts a difference of 2 MeV between the 0p1/2 and
1s1/2 single-particle energies. Based on the measurements in this thesis, Ep1/2 = 0.4 ± 0.1. Given
the current understanding that at least one negative parity state lies below 0.05 MeV decay energy,
this suggests that the second state would need to be at least 4 MeV lower than the currently known
` = 0 ground state. This extrapolation would make 10Li bound, which contradicts experimental
evidence. Since the difference between the 0p1/2 and 1s1/2 orbitals would be greater in 9He (where
current measurements have it at approximately 1 MeV), the simple linear model presented by Talmi
and Una is not appropriate for calculating the position of the 1s1/2 single-particle energy.

A Faddeev calculation by Thompson and Zhukov calculated the relationship between the 11Li
binding energy and the 0p1/2 single-particle energy in 10Li [80] as a function of the 1s1/2 scattering
length. Figure 1 from that paper has been redrawn here in Figure 5.22. The recent measurement
of 11Li at TITAN has placed stringent limits on the binding energy of 11Li (369.15±0.65 keV) [51].
That measurement and the weighted average of the two ` = 1 states measured here constrain the
box (that looks more like a line) shown in Figure 5.22. The location of the box indicates that the
1s1/2 virtual pole needs to be more negative than −44 fm, which means it needs to be lower than
10 keV. To keep the 1s1/2 weighted average below 10 keV requires that the highest-lying state of
this negative parity doublet be below 27 keV. The currently known position of the ` = 0 ground
state is below 50 keV. If both the 2− and the 1− states are below 50 keV, it is unlikely they will
be distinguished experimentally.

5.3 12Be

Unbound 12Be was populated via a single-proton knockout from the 13B beam. The two-body
decay energy spectrum is shown in Figure 5.23. The spectrum is dominated by a Breit-Wigner-like
peak around 1.2 MeV. Comparison with Figure 1.12 suggests that a state here is consistent with
the energy of a previously measured state at 4580±5 keV excitation energy [114].

Given the single-particle levels available to the valence neutrons in 12Be, we expect the emitted
neutron to have ` = 0, 1, 2. The best fit with a single ` = 1 resonance is shown in the left panel of
Figure 5.24. A small background (< 3% population) was required to fit the small shoulder at low
energies. The Maxwellian background used has a shape similar to the “decay energy” of a small
amount of 12Be contamination. The best-fit shown uses an energy of 1243±20 keV and a width
of 634±50 keV. The χ2 minimization curves for each of these parameters are shown in Figure 5.25
and a summary of the systematic error analysis is shown in Table 5.6. Neither an ` = 0 or ` = 2
lineshape (shown in Figure 5.26) fit the data equally well.

The two bound states in 11Be allow for the possibility of decay to either the 1/2+ ground state
or the 1/2− excited state at 320 keV. Since no gamma detection was available for this experiment,
there is no way to distinguish these two decays. The unbound state could be at 4412±26 keV or
at 4732±26 keV excitation energy, depending on if it decayed to the ground or first excited state,
respectively. If the previously measured 4580±5 keV state were to decay to these states, it would
decay with an energy of 1411 or 1091 keV, on either side of the measured 1243±20 keV decay
energy. To show the significance of this difference, two ` = 1 lineshapes representing those two
potential decay energies are shown in the right panel of Figure 5.24.
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Figure 5.23: Decay energy of the 11Be+n system after population of 12Be via a two-proton knockout
from a 13B beam.
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Figure 5.24: Different simulated lineshapes fitted or compared to the 11Be+n decay energy lineshape
shown in Figure 5.23. Left panel: data is fit with a single ` = 1 resonant lineshape and a background.
Right panel: data is compared to two lineshapes assuming total decay from a previously measured
state at 4580 keV in 12Be to the excited 1/2− state in 11Be (left lineshape) and to the 1/2+ ground
state (right lineshape).
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Figure 5.25: χ2 plots for the energy (left) and width (right) of the single ` = 1 decay fit to the data
in the upper left panel of Figure 5.24. Dashed vertical lines show the statistical 1σ limits and the
solid vertical lines indicate the additional systematic error.

Table 5.6: Sources of systematic error in the 12Be decay. Sources of error in the data are in the top
section and sources of error in the simulation are in the second section.

Associated error
Source Variance Energy (keV) Width (keV)

MoNA-LISA global time offsets ±0.2 ns 10 20
MoNA-LISA detector positions ±2 cm 15 40

MoNA-LISA x-position resolution 3±1cm 5 13
MoNA-LISA time resolution 0.18±0.05 ns 2 12

MoNA-LISA PMT threshold 0.6+0.4
−0.15 MeVee 2 6

Error from fitting 2 4

Total systematic 20 50
Statistical 5 25

Total error 20 50

Table 5.7: Parameters for potential decays from positive and negative parity states in 12Be, using
Sn=3169±16 keV [117].

Positive Negative

Decay energy (keV) 1243±20 1243±20
Multipolarity ` = 1 ` = 1
Final state E* (keV) 320 0
Final state Jπ 1/2− 1/2+

E*−Sn 1563±20 1243±20
E* 4732±26 4412±26
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Figure 5.26: Fits of the 12Be decay energy spectrum with an ` = 0 (left) or ` = 2 (right) lineshape.
The fits are shown on the top row and the bin-by-bin contributions to the χ2 value are shown in
the bottom row.

These two potentially open decay channels also suggest that an unbound state in 12Be could
decay to both bound states of 11Be. The parity of the unbound state can be determined by the
multipolarity of the transition (` = 1) and the parity of the final state. Relevant information for
the two possible decays are shown in Table 5.7.

Though a single ` = 0, 2 decay does not fit the data, an admixture of decays is possible. An
` = 0, 2 decay, which is of opposite multipolarity, would decay to the state left unpopulated by the
` = 1 decay. Assuming a negative (positive) parity for the unbound state, the additional lineshape
would have a central energy 320 keV lower (higher) than the ` = 1 decay. The fit of these two
lineshapes to the data would push the central energy of the ` = 1 lineshape higher (lower) than
1243 keV, which would in turn push the excitation energy of 4412 (4732) keV higher (lower). The
addition of a second open decay channel would keep the excitation energy within in the limits
established by the ` = 1 single channel decay. With this consideration in mind, the excitation
energy measured here is between 4400 and 4800 keV.

Any state within this excitation energy range is also unbound to two-neutron decay and would
be expected to release decay energies ranging from 738 to 1058 keV. The three-body decay energy
spectrum in coincidence with 10Be fragments is shown in the lower left panel of Figure 5.27. A peak
is visible around 500 keV and perhaps another one around 1250 keV, but there appears to be a dip
in the spectrum between 739 and 1058 keV. When the causality cut is applied (shown in the lower
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Figure 5.27: Various decay energy spectra in coincidence with 10Be fragments. Upper left panel:
two-body decay energy. Upper right panel: two-body decay energy spectrum, requiring only one
interaction per event in MoNA-LISA. Lower left panel: three-body decay energy spectrum. Lower
right panel: three-body decay energy spectrum with causality cuts applied.

right panel of Figure 5.27), very few events remain and no structure is visible. This decimation of
counts suggests that very little of this unbound state in 12Be decays by two neutron emission.

To put a more quantitative upper limit on the branching ratio to the two-neutron decay channel,
simulations were fit to the two-body decay energy histogram, the two-body decay energy gated on
only one interaction histogram, and the three-body decay energy histogram, all shown in Figure
5.27. The only histogram in Figure 5.27 not used in the fit was the causality-gated spectrum in the
lower right. In addition to the two-neutron decay simulation, the fit included one-neutron decays
from unbound states in 11Be. These decays were taken from previous measurements of neutron
decays after neutron removal reactions from 12Be [109, 115] and included decays from the 5/2+
state and the first 3/2− state in 11Be to the ground state in 10Be (decay energies of 1277 keV and
2690 keV, respectively) and the decay of the second 3/2− state to the first excited state of 10Be
(with a decay energy of 80 keV). In all cases, the energies and widths were fixed and only the
relative intensities of each component were varied.

The result of this fit is shown in Figure 5.28. The two-body decay energy spectra (top row)
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Figure 5.28: The data from Figure 5.27, fitted with simulated spectra. The green, red, and purple
lineshape show single-neutron decays from 11Be as used by Peters et al. [115]. The blue line shows
a two-neutron decay. The energies and widths of each decay were fixed, leaving only the relative
amplitudes to vary in the fitting. All spectra except the lower right were included in the fitting.

and the three-body ungated decay energy spectrum (bottom left panel) are dominated by signals
from one-neutron decays, but a small proportion of the two-neutron decay (blue dashed line) still
contributes. Combining this with the previous simulation results in Figure 5.24, the branching ratio
to the two-neutron decay energy channel has a less than 5% branching ratio from the unbound state
in 12Be.

Although the range of possible excitation energies includes a 4580 keV decay, the total width of
the state measured by Fortune et al. was 107±17 keV [114], significantly smaller than the presently
observed full-width at half-maximum (approximately 1 MeV) or the partial widths deduced from
simulation. Even the inclusion of an empirical enhancement factor of 1.6 (suggest by Fortune in
Ref. [158]) cannot reconcile this discrepancy. It is likely then, that this is a wider state with a
similar energy that has not previously been measured.

Due to the ongoing discussion between Garrido and Fortune described in Section 1.6.2, the spins
and parities of states in this regions are also of interest. The inability to fit a single ` = 0, 2 decay
to the data indicates that the decay must contain the emission of an ` = 1 neutron. Since both of
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Figure 5.29: Level diagram of measured states in 12Be from Figure 1.12 compared to a continuum
shell model calculation of states in 12Be [132]. The state presented here is represented by the grey
box. The width of the box represents the error of the energy measurements.

the potential final states in 11Be have a spin of 1/2, this restricts the spin of this state to 0, 1, or
2. The restriction can be slightly strengthened by consideration of the reaction mechanism. The
ground state of the 13B beam is 3/2−. States of 0+ and 2+ can be populated by the knockout of a
p3/2 proton, 1− and 2− states can be populated by the knockout of a s1/2 proton, and the knockout
of a proton from the p1/2 orbital can populate states with spin-parities of 1+ and 2+. This leaves
the 0− state which can only be populated by coupling a 3/2+ hole to the 3/2− ground state. This
proton would have to come from the 0d3/2 orbital, which is very unlikely.

We can place a loose restriction on the parity by observing that the branching ratio to the
two-neutron decay channel is very low. A recent paper by Garrido et al. reported calculations of
branching ratios for different unbound states in 12Be [122]. The positive parity states all showed
significant branching to the two-neutron decay channel and the negative parity states showed sig-
nificantly less. This calculation suggests then, that this new unbound state is likely of negative
parity.

A continuum shell model calculation (CSM) [132] is compared to the experimental spectrum
in Figure 5.29. The state measured here is shown by the grey box where the width indicates the
uncertainty in the state’s location. There are many predicted states in this energy range of the
CSM calculation. Specifically, there is a 1− state slightly lower in energy and a 2− state slightly
higher in energy. The calculated 1− state likely corresponds to the bound 1− state at just under 3
MeV excitation energy but the 2− state is close.

The measurement of this new state doesn’t contradict the previous (t, p) measurements. Fortune
et al. stated that ”Below 6 MeV excitation energy, our data allow us to set an upper limit of 30
µb/sr cross section for any possible missing narrow state of 12Be” [114]. The state measured in this
work, however, with a width of 634 keV, would not have been identifiable in that data set. This
measurement is supported by a 11Be(d, p) reaction reported in the PhD thesis of Johansen [159].
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In that work, a neutron unbound state at an excitation energy of ≈ 4500 keV was observed. It
was concluded to be the same state measured by Fortune et al., but the width of the measurement
(> 200 keV) was greater than that measured in the (t, p) experiment.

Finally, this state could resolve the ongoing discussion between Fortune [160] and Garrido et
al. [123], by allowing the spin and parity of the narrow state to stand at 3− while providing another
state in that energy region that could be identified with the 1− state calculated by Garrido et al.
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Chapter 6

Summary and Conclusions

In this dissertation, measurements of three neutron-rich isotopes, 11Li, 10Li, and 12Be have been
reported. All three lie in the lightest known island of inversion on the chart of nuclides. In addition,
11Li is a two-neutron halo nucleus whose excited states all decay by two-neutron emission to 9Li. As
one of the lighter Borromean nuclei, 11Li is a testing ground for three-body models that will likely
be used along the neutron drip-line at higher masses. Crucial to understanding 11Li is accurately
measuring the states of 10Li, one of its subsystems. The unbound state measured in 12Be is located
near an unbound state whose spin and parity have been the subject of recent debate.

Previous measurements of unbound states in 11Li suggested at least one state around 1000 keV
excitation energy was present. The unbound state measured in this experiment had an excitation
energy of 1210±80 keV and a width greater than 1200 keV. Beyond the measurement of the en-
ergy and width of this state, Jacobi coordinate spectra and Dalitz plots were used to investigate
correlations between the three decay products in order to gain insight into the decay mechanism.
Jacobi coordinates constructed from the momentum vectors of the two neutrons and the daughter
fragment showed a correlation between the neutrons that was stronger than that expected from a
final state interaction alone.

The population of 10Li from 12B was expected to populate primarily positive parity states,
which allowed for the measurement of low-lying positive parity states without interference from
the negative parity ground state. The decay energy spectrum showed a broad peak around 500
keV decay energy. While the peak energy was consistent with previous measurements, the width
was not. The decay energy spectrum was unable to be fit with a single peak and required two
additional peaks to fit the spectrum and be consistent with previous measurements. A positive
parity state below the 500 keV state was hinted at in previous papers but measurements have been
plagued by background and interference from the ground state. The measurement of two low-lying
` = 1 states at 110±40 and 500±100 keV decay energy are assumed to be the 1+/2+ doublet from
the coupling of the 0p3/2 proton to the 0p1/2 neutron. Comparison of these states with a Faddeev
calculation suggests that both states of the 2−/1− doublet are below 50 keV and thus unlikely to
be distinguished experimentally. A third ` = 1 state was also measured at 1100±100 keV.

The unbound state populated in 12Be was best fit with an ` = 1 decay at a decay energy of
1243±20 keV. The two potential final states in 11Be as well as the potential for an ` = 0, 2 decay
admixture complicated the assignment of the decay energy to an excitation energy in 12Be. The
range of potential excitation energies ranges from 4400 to 4800 keV. One state had previously been
measured in this excitation energy range, at 4580±5 keV, but a difference in widths (107±17 keV for
the 4580 keV state and 634±50 for the state measured here) is evidence that the two states are not
the same. Spin selectivity from the production mechanism and ` = 1 best fit restricts the spin and
parity of the unbound state. Although every excitation energy possible is above the two-neutron
separation energy, no significant branching through the 2n decay channel to 10Be is seen in the
data. A limit of 5% branching ratio was placed on the 2n decay channel. Most two-neutron decays
are expected to be emitted from the same orbital, so a negative-parity assignment for the unbound
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state would likely produce a small branching ratio to the 2n channel. The most likely spin-parity
assignments for the unbound state are 1− or 2−.

These results suggest a few other studies that could aid in understanding the complex rela-
tionships in three-body systems like those described here. A higher-statistics experiment studying
the unbound structure of 10Li that was able to distinguish the two low-lying ` = 1 states would
be helpful in confirming the single-particle energy of the 0p1/2 level. This would then be used
to estimate the single-particle energy of the 1s1/2 orbital, a value which seems unlikely to be di-
rectly measurable. The more data that is gathered on 10Li, the more accurate the calculations
and predictions of 11Li will be. Reconciling the assortment of measurements of unbound states
in 10,11Li would assist in understanding which components of a three-body system calculation are
most important. With regards to the 12Be system in particular, repeating this experiment with
gamma-ray detection would allow the separation of multiple 1n decay channels and the assignment
of a parity of the state as well as an excitation energy. It would also be useful to repeat Fortune’s
(t, p) reaction with neutron detection. Observation of the state’s decay would assist in assignment
of spin and parity and would also provide another way of distinguishing the two states.
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